Model K-C2
 (Machine Code: B121/B122/B123)

SERVICE MANUAL

©IMPORTANT SAFETY NOTICES

PREVENTION OF PHYSICAL INJURY

1. Before disassembling or assembling parts of the copier and peripherals, make sure that the power cord is unplugged.
2. The wall outlet should be near the copier and easily accessible.
3. Note that some components of the copier and the paper tray unit are supplied with electrical voltage even if the main power switch is turned off.
4. If a job has started before the copier completes the warm-up or initializing period, keep hands away from the mechanical and electrical components because the starts making copies as soon as the warm-up period is completed.
5. The inside and the metal parts of the fusing unit become extremely hot while the copier is operating. Be careful to avoid touching those components with your bare hands.

HEALTH SAFETY CONDITIONS

Toner and developer are non-toxic, but if you get either of them in your eyes by accident, it may cause temporary eye discomfort. Try to remove with eye drops or flush with water as first aid. If unsuccessful, get medical attention.

OBSERVANCE OF ELECTRICAL SAFETY STANDARDS

The copier and its peripherals must be installed and maintained by a customer service representative who has completed the training course on those models.

SAFETY AND ECOLOGICAL NOTES FOR DISPOSAL

1. Do not incinerate toner bottles or used toner. Toner dust may ignite suddenly when exposed to an open flame.
2. Dispose of used toner, developer, and organic photoconductors in accordance with local regulations. (These are non-toxic supplies.)
3. Dispose of replaced parts in accordance with local regulations.

LASER SAFETY

The Center for Devices and Radiological Health (CDRH) prohibits the repair of laser-based optical units in the field. The optical housing unit can only be repaired in a factory or at a location with the requisite equipment. The laser subsystem is replaceable in the field by a qualified Customer Engineer. The laser chassis is not repairable in the field. Customer engineers are therefore directed to return all chassis and laser subsystems to the factory or service depot when replacement of the optical subsystem is required.

```
WARNING
Use of controls, or adjustment, or performance of procedures other than
those specified in this manual may result in hazardous radiation exposure.
```

WARNING FOR LASER UNIT
WARNING: Turn off the main switch before attempting any of the procedures in the Laser Unit section. Laser beams can seriously damage your eyes.

CAUTION MARKING:

Symbols and Abbreviations

This manual uses several symbols and abbreviations. The meaning of those symbols and abbreviations are as follows:

	See or Refer to
5	Clip ring
B	Screw
EID	Connector
SEF	Short Edge Feed
LEF	Long Edge Feed

TABLE OF CONTENTS

1. INSTALLATION 1-1
1.1 INSTALLATION REQUIREMENTS 1-1
1.1.1 ENVIRONMENT 1-1
1.1.2 MACHINE LEVEL 1-2
1.1.3 MINIMUM SPACE REQUIREMENTS 1-3
1.1.4 POWER REQUIREMENTS 1-3
1.2 COPIER INSTALLATION 1-4
1.2.1 POWER SOCKETS FOR PERIPHERALS 1-4
1.2.2 ACCESSORY CHECK 1-4
1.2.3 INSTALLATION PROCEDURE 1-5
1.3 PLATEN COVER INSTALLATION 1-8
1.3.1 ACCESSORY CHECK. 1-8
1.3.2 INSTALLATION PROCEDURE 1-8
1.4 ARDF INSTALLATION. 1-9
1.4.1 ACCESSORY CHECK 1-9
1.4.2 INSTALLATION PROCEDURE 1-9
1.5 ADF INSTALLATION 1-12
1.5.1 ACCESSORY CHECK 1-12
1.5.2 INSTALLATION PROCEDURE 1-12
1.6 TWO-TRAY PAPER TRAY UNIT INSTALLATION 1-15
1.6.1 ACCESSORY CHECK 1-15
1.6.2 INSTALLATION PROCEDURE 1-15
1.7 ONE-TRAY PAPER TRAY UNIT INSTALLATION 1-19
1.7.1 ACCESSORY CHECK 1-19
1.7.2 INSTALLATION PROCEDURE 1-19
1.8 ONE-BIN TRAY INSTALLATION 1-22
1.8.1 ACCESSORY CHECK 1-22
1.8.2 INSTALLATION PROCEDURE 1-22
1.9 ANTI-CONDENSATION HEATER INSTALLATION 1-25
1.10 TRAY HEATERS 1-26
1.10.1 UPPER TRAY HEATER 1-26
1.10.2 LOWER TRAY HEATER (TWO-TRAY MODEL ONLY) 1-27
1.10.3 TRAY HEATERS FOR THE OPTIONAL PAPER FEED UNITS 1-28
1.11 KEY COUNTER INSTALLATION 1-31
1.12 MFP EXPANSION 1-33
1.12.1 ACCESSORY CHECK 1-34
1.12.2 INSTALLING EXPANSION COMPONENT 1-35
Step 1-Controller Box 1-35
Step 2-Printer/Scanner 1-36
Step 3-PostScript 1-36
Step 4-Fax 1-37
Step 5-Reassembling 1-37
1.12.3 INSTALLING PANELS AND KEYS 1-37
Step 6-Panel 1-37
Step 7-Printer/Scanner Keys 1-38
Step 8-Fax Keys 1-38
Step 9-Printer/Scanner and Fax Keys 1-39
1.12.4 SETTINGS 1-40
Step 10-MFP Settings and Time Settings 1-40
Step 11-Fax Settings 1-40
1.13 IEEE1284/IEEE1394 INTERFACE 1-41
1.13.1 ACCESSORY CHECK 1-42
1.13.2 INSTALLATION PROCEDURE 1-42
UP Mode Settings for Wireless LAN 1-44
SP Mode Settings for IEEE 802.11b Wireless LAN 1-45
1.14 BLUETOOTH 1-46
1.14.1 ACCESSORY CHECK 1-46
1.14.2 INSTALLATION PROCEDURE 1-46
2. PREVENTIVE MAINTENANCE 2-1
2.1 PM TABLES 2-1
Optics 2-1
Drum Area 2-1
Paper Feed 2-1
Fusing Unit 2-2
ADF/ARDF 2-2
Paper Tray Unit 2-2
2.2 HOW TO RESET THE PM COUNTER 2-3
3. REPLACEMENT AND ADJUSTMENT 3-1
3.1 GENERAL CAUTIONS 3-1
3.1.1 PCU (PHOTOCONDUCTOR UNIT) 3-1
3.1.2 TRANSFER ROLLER 3-1
3.1.3 SCANNER UNIT 3-1
3.1.4 LASER UNIT 3-2
3.1.5 FUSING UNIT 3-2
3.1.6 PAPER FEED 3-2
3.1.7 IMPORTANT 3-2
3.2 SPECIAL TOOLS AND LUBRICANTS 3-3
3.3 EXTERIOR COVERS \& OPERATION PANEL 3-4
3.3.1 REAR COVER 3-4
3.3.2 REAR LOWER COVER (TWO-TRAY MODELS ONLY) 3-4
3.3.3 COPY TRAY 3-5
3.3.4 UPPER COVERS 3-5
3.3.5 LEFT COVER 3-6
3.3.6 FRONT COVER 3-6
3.3.7 FRONT RIGHT COVER 3-7
3.3.8 RIGHT REAR COVER 3-7
3.3.9 RIGHT DOOR (B121/B122)/DUPLEX UNIT (B123) 3-8
3.3.10 BY-PASS TRAY 3-9
3.3.11 LEFT LOWER COVER (TWO-TRAY MODELS ONLY) 3-10
3.3.12 RIGHT LOWER COVER (TWO-TRAY MODELS ONLY) 3-10
3.3.13 PLATEN COVER SENSOR 3-10
3.4 SCANNER UNIT 3-11
3.4.1 EXPOSURE GLASS/DF EXPOSURE GLASS 3-11
Exposure Glass 3-11
DF Exposure Glass 3-11
3.4.2 LENS BLOCK 3-12
3.4.3 LAMP STABILIZER BOARD AND EXPOSURE LAMP 3-12
3.4.4 ORIGINAL WIDTH/LENGTH SENSOR 3-13
Sensor Positions 3-13
Sensor Positions for China Model (8K/16K) 3-14
3.4.5 SCANNER MOTOR 3-15
3.4.6 SCANNER HOME POSITION SENSOR 3-15
3.4.7 ADJUSTING SCANNER POSITIONS 3-16
Overview 3-16
Adjusting the First Scanner Contact Points 3-17
Adjusting the Second Scanner Contact Points 3-18
3.5 LASER UNIT 3-19
3.5.1 LOCATION OF CAUTION DECAL 3-19
3.5.2 TONER SHIELD GLASS 3-20
3.5.3 LASER UNIT 3-20
3.5.4 LD UNIT 3-21
3.5.5 POLYGONAL MIRROR MOTOR 3-21
3.5.6 LASER UNIT ALIGNMENT ADJUSTMENT 3-22
3.6 PCU SECTION 3-23
3.6.1 PCU 3-23
3.6.2 PICK-OFF PAWLS AND TONER DENSITY SENSOR 3-23
3.6.3 OPC DRUM 3-24
3.6.4 CHARGE ROLLER AND CLEANING BRUSH 3-25
3.6.5 CLEANING BLADE 3-25
3.6.6 DEVELOPER 3-26
3.6.7 AFTER REPLACEMENT OR ADJUSTMENT 3-27
3.7 TONER SUPPLY MOTOR 3-28
3.8 PAPER FEED SECTION 3-28
3.8.1 PAPER FEED ROLLER 3-28
3.8.2 FRICTION PAD 3-28
3.8.3 PAPER END SENSOR 3-29
3.8.4 EXIT SENSOR 3-29
Non-duplex Models 3-29
Duplex Models 3-29
3.8.5 BY-PASS FEED ROLLER AND PAPER END SENSOR 3-30
3.8.6 REGISTRATION ROLLER 3-31
3.8.7 BY-PASS PAPER SIZE SWITCH 3-32
3.8.8 REGISTRATION CLUTCH 3-32
3.8.9 REGISTRATION SENSOR 3-33
3.8.10 UPPER PAPER FEED CLUTCH AND BY-PASS FEED CLUTCH 3-33
3.8.11 RELAY CLUTCH 3-34
3.8.12 RELAY SENSOR 3-34
3.8.13 LOWER PAPER FEED CLUTCH (TWO-TRAY MODELS ONLY) 3-34
3.8.14 VERTICAL TRANSPORT SENSOR (TWO-TRAY MODELS ONLY) 3-35
3.8.15 PAPER SIZE SWITCH 3-35
3.9 IMAGE TRANSFER 3-36
3.9.1 IMAGE TRANSFER ROLLER 3-36
3.9.2 IMAGE DENSITY SENSOR 3-36
3.10 FUSING 3-37
3.10.1 FUSING UNIT 3-37
3.10.2 THERMISTOR 3-37
3.10.3 FUSING LAMPS 3-38
3.10.4 HOT ROLLER STRIPPER PAWLS 3-38
3.10.5 HOT ROLLER 3-39
3.10.6 THERMOSTAT 3-39
3.10.7 PRESSURE ROLLER AND BUSHINGS 3-40
3.10.8 NIP BAND WIDTH ADJUSTMENT 3-41
3.10.9 CLEANING ROLLER 3-42
3.11 DUPLEX UNIT (DUPLEX MODELS ONLY) 3-43
3.11.1 DUPLEX EXIT SENSOR 3-43
3.11.2 DUPLEX ENTRANCE SENSOR 3-43
3.11.3 DUPLEX INVERTER SENSOR 3-44
3.11.4 DUPLEX TRANSPORT MOTOR 3-45
3.11.5 DUPLEX INVERTER MOTOR 3-45
3.11.6 DUPLEX CONTROL BOARD 3-45
3.12 OTHER REPLACEMENTS 3-46
3.12.1 QUENCHING LAMP 3-46
3.12.2 HIGH-VOLTAGE POWER SUPPLY BOARD 3-46
3.12.3 BICU (BASE-ENGINE IMAGE CONTROL UNIT) 3-47
3.12.4 MAIN MOTOR 3-47
3.12.5 REAR EXHAUST FAN (B123 ONLY) 3-48
3.12.6 LEFT EXHAUST FAN 3-48
3.12.7 PSU (POWER SUPPLY UNIT) 3-48
3.12.8 GEARBOX 3-49
Replacement Procedure 3-49
Gear Arrangement in the Gearbox 3-51
3.13 COPY ADJUSTMENTS: PRINTING/SCANNING 3-52
3.13.1 PRINTING 3-52
Registration - Leading Edge/Side-to-Side 3-52
Blank Margin 3-53
Main Scan Magnification 3-53
3.13.2 SCANNING 3-54
Registration: Platen Mode 3-54
Magnification 3-54
Standard White Density Adjustment 3-55
3.13.3 ADF IMAGE ADJUSTMENT 3-56
Registration and Blank Margin 3-56
Sub-scan Magnification 3-56
4. TROUBLESHOOTING 4-1
4.1 SERVICE CALL CONDITIONS 4-1
4.1.1 SUMMARY 4-1
4.1.2 SC CODE DESCRIPTIONS 4-2
4.2 ELECTRICAL COMPONENT DEFECTS 4-12
4.2.1 SENSORS 4-12
4.2.2 SWITCHES 4-14
4.3 BLOWN FUSE CONDITIONS 4-14
4.4 LED DISPLAY 4-15
4.4.1 BICU 4-15
5. SERVICE TABLES 5-1
5.1 SERVICE PROGRAM MODE 5-1
5.1.1 USING SP MODE 5-1
Starting SP Mode 5-1
Starting SSP Mode 5-2
Selecting Programs 5-2
Specifying Values. 5-2
Activating Copy Mode 5-2
Quitting Programs/Ending (S)SP Mode 5-2
5.1.2 SP MODE TABLES-BASIC 5-3
SP1-XXX (Feed) 5-3
SP2-XXX (Drum) 5-6
SP4-XXX (Scanner) 5-11
SP5-XXX (Mode) 5-16
SP6-XXX (Peripherals) 5-19
SP7-XXX (Data Log) 5-20
SP8-XXX (History) 5-24
5.1.3 SP MODE TABLES-MFP 5-27
SP1-XXX (Feed) 5-27
SP2-XXX (Drum) 5-30
SP4-XXX (Scanner) 5-34
SP5-XXX (Mode) 5-41
SP6-XXX (Peripherals) 5-54
SP7-XXX (Data Log) 5-55
SP8-XXX (History) 5-60
SP9-XXX (Etc.) 5-71
5.1.4 ADJUSTING REGISTRATION AND MAGNIFICATION 5-73
5.1.5 ID SENSOR ERROR ANALYSIS (SP2-221) 5-74
5.1.6 DISPLAY APS DATA (SP4-301-1) 5-75
Sensor Positions 5-75
Reading the Data 5-75
5.1.7 MEMORY CLEAR 5-76
Basic Machine and MFP Machine 5-76
Exceptions 5-76
With Flash Memory Card (Basic Machine Only) 5-77
Without Flash Memory Card. 5-77
5.1.8 INPUT CHECK (SP5-803) 5-78
Conducting an Input Check 5-78
Input Check Table 5-78
5.1.9 OUTPUT CHECK (SP5-804) 5-80
Conducting an Output Check 5-80
Output Check Table 5-80
5.1.10 SERIAL NUMBER INPUT (SP5-811) 5-81
Specifying Characters 5-81
Serial Number and NVRAM 5-81
5.1.11 NVRAM DATA UPLOAD/DOWNLOAD (SP5-824/825) 5-82
Overview 5-82
NVRAM Upload (SP5-824-1) 5-82
NVRAM Download (SP5-825-1) 5-83
5.1.12 FIRMWARE UPDATE PROCEDURE FOR BASIC MACHINES 5-84
5.1.13 TEST PATTERN PRINT (SP5-902-1) 5-85
Executing Test Pattern Printing 5-85
Test Patterns 5-85
5.1.14 COUNTER-EACH PAPER JAM (SP7-504) 5-86
5.1.15 SMC PRINT (SP5-990) 5-87
5.1.16 ORIGINAL JAM HISTORY DISPLAY (SP7-508) 5-88
Viewing the Copy Jam History 5-88
Jam History Code 5-88
5.1.17 ADF APS SENSOR OUTPUT DISPLAY (SP6-901) 5-89
Sensor Positions 5-89
Reading Data 5-89
5.2 FIRMWARE UPDATE PROCEDURE FOR MFP MACHINES 5-90
5.2.1 BEFORE YOU BEGIN 5-90
5.2.2 FIRMWARE UPDATE PROCEDURE FOR MFP MACHINES 5-91
5.2.3 NVRAM DATA UPLOAD/DOWNLOAD 5-95
Uploading Content of NVRAM to an SD card 5-95
Downloading an SD Card to NVRAM 5-95
6. DETAILED SECTION DESCRIPTIONS 6-1
6.1 OVERVIEW 6-1
6.1.1 COMPONENT LAYOUT 6-1
6.1.2 PAPER PATH 6-3
6.1.3 DRIVE LAYOUT. 6-4
6.2 BOARD STRUCTURE 6-5
6.2.1 BLOCK DIAGRAM 6-5
7. BICU (Base Engine and Image Control Unit) 6-6
8. SBU (Sensor Board Unit) 6-6
6.3 COPY PROCESS OVERVIEW 6-7
6.4 SCANNING 6-9
6.4.1 OVERVIEW 6-9
Lamp Stabilizer Fuse 6-9
6.4.2 SCANNER DRIVE 6-10
6.4.3 ORIGINAL SIZE DETECTION IN PLATEN MODE 6-11
6.5 IMAGE PROCESSING 6-13
6.5.1 OVERVIEW 6-13
6.5.2 SBU (SENSOR BOARD UNIT) 6-14
6.5.3 IPU (IMAGE PROCESSING UNIT) 6-15
Overview 6-15
Image Processing Modes 6-16
Image Processing Path 6-17
Original Modes 6-18
SP Modes for Each Image Processing Step 6-18
Auto Shading 6-20
White Line Erase 6-21
Black Line Erase 6-21
Auto image density (ADS) 6-22
Scanner Gamma (γ) Correction 6-23
Main Scan Magnification 6-24
Mirroring for ADF Mode 6-24
Filtering 6-25
ID Gamma (γ) Correction 6-26
Gradation Processing. 6-27
6.5.4 VIDEO CONTROL UNIT (VCU) 6-28
Fine Character and Image (FCI) 6-28
Printer Gamma Correction 6-28
6.6 LASER EXPOSURE 6-29
6.6.1 OVERVIEW 6-29
6.6.2 AUTO POWER CONTROL (APC) 6-30
6.6.3 LD SAFETY SWITCH 6-31
6.7 PHOTOCONDUCTOR UNIT (PCU) 6-32
6.7.1 OVERVIEW 6-32
6.7.2 DRIVE 6-33
6.8 DRUM CHARGE 6-34
6.8.1 OVERVIEW 6-34
6.8.2 CHARGE ROLLER VOLTAGE CORRECTION 6-35
Correction for Environmental Conditions 6-35
6.8.3 ID SENSOR PATTERN PRODUCTION TIMING 6-36
6.8.4 DRUM CHARGE ROLLER CLEANING 6-37
6.9 DEVELOPMENT 6-38
6.9.1 OVERVIEW 6-38
6.9.2 DRIVE 6-39
6.9.3 DEVELOPER MIXING 6-39
6.9.4 DEVELOPMENT BIAS 6-40
6.9.5 TONER SUPPLY 6-41
Toner Bottle Replenishment Mechanism 6-41
Toner Supply Mechanism 6-42
6.9.6 TONER DENSITY CONTROL 6-43
Overview 6-43
Toner Density Sensor Initial Setting 6-45
Toner Concentration Measurement 6-45
Vsp/Vsg Detection 6-45
Toner Supply Reference Voltage (Vref) Determination 6-45
Toner Supply Determination. 6-45
Toner Supply Motor On Time Determinations 6-46
6.9.7 TONER SUPPLY IN ABNORMAL SENSOR CONDITIONS 6-47
ID Sensor 6-47
TD Sensor 6-47
6.9.8 TONER NEAR END/END DETECTION AND RECOVERY 6-48
Toner Near End Detection 6-48
Toner Near End Recovery 6-48
Toner End Detection 6-48
Toner End Recovery 6-48
6.10 DRUM CLEANING AND TONER RECYCLING 6-49
6.10.1 DRUM CLEANING 6-49
6.10.2 TONER RECYCLING 6-49
6.11 PAPER FEED 6-50
6.11.1 OVERVIEW 6-50
6.11.2 PAPER FEED DRIVE MECHANISM 6-51
6.11.3 PAPER FEED AND SEPARATION MECHANISM 6-51
6.11.4 PAPER LIFT MECHANISM 6-52
6.11.5 PAPER END DETECTION 6-52
6.11.6 PAPER SIZE DETECTION 6-53
Paper Tray 6-53
By-pass Tray 6-54
6.11.7 SIDE FENCES 6-55
6.11.8 PAPER REGISTRATION 6-55
6.12 IMAGE TRANSFER AND PAPER SEPARATION 6-56
6.12.1 OVERVIEW 6-56
6.12.2 IMAGE TRANSFER CURRENT TIMING 6-57
6.12.3 TRANSFER ROLLER CLEANING 6-58
6.12.4 PAPER SEPARATION MECHANISM 6-58
6.13 IMAGE FUSING AND PAPER EXIT 6-59
6.13.1 OVERVIEW 6-59
6.13.2 FUSING UNIT DRIVE AND RELEASE MECHANISM 6-60
Fusing Unit Drive 6-60
Drive Release Mechanism 6-60
Contact/Release Control 6-60
Drive Release Solenoid 6-61
6.13.3 FUSING ENTRANCE GUIDE SHIFT 6-62
6.13.4 PRESSURE ROLLER 6-62
6.13.5 FUSING TEMPERATURE CONTROL 6-63
Overview 6-63
Temperature Control 6-64
6.13.6 OVERHEAT PROTECTION 6-66
6.14 DUPLEX UNIT 6-67
6.14.1 OVERALL 6-67
6.14.2 DRIVE MECHANISM 6-68
6.14.3 BASIC OPERATION 6-69
Larger than A4 Short-edge/LT Short-edge 6-69
Up to A4 Short-edge/LT Short-edge 6-70
6.14.4 FEED IN AND EXIT MECHANISM 6-71
6.15 ENERGY SAVER MODES OF BASIC MACHINES 6-72
Overview 6-72
AOF. 6-72
Timers 6-73
Recovery 6-73
6.16 ENERGY SAVER MODES OF MFP MACHINES 6-74
Overview 6-74
AOF 6-74
Timers 6-75
Recovery 6-75
PERIPHERALS
ONE-BIN TRAY (B621)
9. REPLACEMENT AND ADJUSTMENT B621-1
1.1 TRAY OPEN SWITCH B621-1
1.2 PAPER SENSOR B621-3
1.3 EXIT SENSOR B621-3
10. DETAILED DESCRIPTION B621-4
2.1 COMPONENTS B621-4
2.2 SETTINGS B621-5
Settings B621-5
Limitation B621-5
2.3 PAPER TRANSPORT. B621-6
2.3.1 PAPER HANDLING B621-6
2.3.2 JUNCTION GATE B621-6
2.3.3 PAPER-SIZE LIMITATION B621-6
2.4 EXIT TRAY LED B621-7
2.5 TRAY OPEN SWITCH B621-8
11. TROUBLESHOOTING B621-9
3.1 PAPER JAM B621-9
3.2 PAPER-JAM HANDLING B621-10
3.2.1 RESETTING THE COPIER B621-10
3.2.2 COMPONENT-RELATED PAPER JAM B621-11
Motor-Related Paper Jam B621-11
Solenoid-Related Paper Jam B621-11
ADF (B616) AND ARDF (B617)
ADF (B616) AND ARDF (B617) B616-1
SPECIFICATIONS SPEC-1
12. GENERAL SPECIFICATIONS SPEC-1
Duplex Unit (B123 only) SPEC-5
13. SUPPORTED PAPER SIZES SPEC-6
2.1 ORIGINAL SIZE DETECTION SPEC-6
North America, Europe, Asia, Taiwan SPEC-6
China, Korea SPEC-7
2.2 PAPER FEED AND EXIT SPEC-8
Main Frame, Duplex SPEC-8
Optional Paper Tray, One-Bin Tray, By-pass Tray SPEC-10
14. MACHINE CONFIGURATION SPEC-12
15. OPTIONAL EQUIPMENT SPEC-15
ARDF SPEC-15
ADF SPEC-16
ONE-TRAY PAPER TRAY UNIT SPEC-17
TWO-TRAY PAPER TRAY UNIT SPEC-18
One-Bin Tray SPEC-18

1. INSTALLATION

\triangle CAUTION

Before installing options, please do the following:

1. If there is a fax unit in the machine, print out all messages stored in the memory, the lists of user-programmed items, and the system parameter list.
2. If there is a printer option in the machine, print out all data in the printer buffer.
3. Turn off the main switch and disconnect the power cord, the telephone line, and the network cable.

1.1 INSTALLATION REQUIREMENTS

1.1.1 ENVIRONMENT

-Temperature and Humidity Chart-

B121I920.WMF

1. Temperature Range: $10^{\circ} \mathrm{C}$ to $32^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right.$ to $\left.89.6^{\circ} \mathrm{F}\right)$
2. Humidity Range: 15% to 80% RH
3. Ambient Less than 1,500 lux (do not expose to direct sunlight) Illumination:
4. Ventilation: $\quad 3$ times/hr/person or more
5. Ambient Dust: Less than $0.075 \mathrm{mg} / \mathrm{m}^{3}\left(2.0 \times 10^{-6} \mathrm{oz} / \mathrm{yd}^{3}\right)$
6. Avoid areas exposed to sudden temperature changes:
1) Areas directly exposed to cool air from an air conditioner.
2) Areas directly exposed to heat from a heater.
7. Do not place the machine where it is exposed to corrosive gases.
8. Do not install the machine at any location over 2,000 m (6,500 ft.) above sea level.
9. Place the copier on a strong and level base. (Inclination on any side should be no more than 5 mm .)
10. Do not place the machine where it is subjected to strong vibrations.

1.1.2 MACHINE LEVEL

Front to back:
Right to left:
Within $5 \mathrm{~mm}\left(0.2^{\prime \prime}\right)$ of level
Within $5 \mathrm{~mm}\left(0.2^{\prime \prime}\right)$ of level

1.1.3 MINIMUM SPACE REQUIREMENTS

Place the copier near the power source, providing clearance as shown:

A (front): 750 mm (30")
B (left): 150 mm (6")
C (rear): 50 mm (2")
D (right): 250 mm (10")

NOTE: The recommended 750 mm front space is sufficient to allow the paper tray to be pulled out. Additional front space is required to allow operators to stand at the front of the machine.

1.1.4 POWER REQUIREMENTS

\triangle CAUTION

1. Make sure that the wall outlet is near the machine and easily accessible. After completing installation, make sure the plug fits firmly into the outlet.
2. Avoid multi-wiring.
3. Be sure to ground the machine.
4. Input voltage:

North and South America, Taiwan: $110-120 \mathrm{~V}, 60 \mathrm{~Hz}, 12$ A
Europe, Asia: $220-240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 7 \mathrm{~A}$

1.2 COPIER INSTALLATION

1.2.1 POWER SOCKETS FOR PERIPHERALS

1.2.2 ACCESSORY CHECK

Check that you have the accessories indicated below.

No.	Description	Q'ty
1	Operation Instructions-General Settings (-17, -29)	1
2	Operation Instructions-Copy Reference (-17, -29)	1
3	NECR-English (-17)	1
4	NECR-Multi Language (-27, -29)	1
5	Model Nameplate (-22, -29)	1
6	Model Name Decal (-22)	1
7	EU Safety Sheet (-22, -24, -26, -27)	1

1.2.3 INSTALLATION PROCEDURE

1. Remove filament tape and other padding.

\triangle CAUTION

Unplug the machine power cord before starting the following procedure.

2. Open the front door and remove the toner bottle holder [A].

3. Open the right door $[\mathrm{B}]$, and remove the PCU (photoconductor unit) [C].
NOTE: The PCU is locked when the right door is closed.

4. Separate the PCU into the upper part and the lower part (
5. Put a sheet of paper on a level surface and place the upper part on it.

NOTE: This prevents foreign material from getting on the sleeve rollers.

6. Distribute a pack of developer [A] to all openings equally.
NOTE: 1) Do not spill the developer on the gears [B]. If you have spilled it, remove the developer by using a magnet or magnetized screwdriver.
2) Do not turn the gear $[B]$ too much. The developer may spill.

B121I914.WMF
7. Reassemble the PCU and reinstall it.
8. Shake the toner bottle [C] several times.

NOTE: Do not remove the bottle cap [D] before you shake the bottle.
9. Remove the bottle cap [D] and install the bottle on the holder.

NOTE: Do not touch the inner cap [E].
10. Set the holder (with the toner bottle) in the machine.

11. Pull out the paper tray [A] and turn the paper size dial to the appropriate size. Adjust the positions of the end and side guides.

NOTE: To move the side guides, release the green lock on the rear side guide.

12. Install the optional ARDF, ADF, or platen cover ($-1.3 / 1.4 / 1.5$).
13. Plug in the main power cord and turn on the main switch.
14. Activate the SP mode and execute "Devlpr Initialize" (SP2-214-001).
15. Wait until the message "Completed" is displayed (about 45 seconds).
16. Activate the User Tools and select the menu "Language."
17. Specify a language. This language is used for the operation panel.
18. Load the paper in the paper tray and make a full size copy, and check if the side-to-side and leading edge registrations are correct. If they are not, adjust the registrations (-3.13).

1.3 PLATEN COVER INSTALLATION

1.3.1 ACCESSORY CHECK

Check that you have the accessories indicated below.

No.	Description	Q'ty
1	Stepped Screw	2

1.3.2 INSTALLATION PROCEDURE

| $₫$ CAUTION |
| :--- | :--- |
| Unplug the machine power cord before starting the following procedure. |

1. Install the platen cover $[A]\left({ }_{\xi} \times 2\right)$.

1.4 ARDF INSTALLATION

1.4.1 ACCESSORY CHECK

Check the quantity and condition of the accessories against the following list.

No.	Description	Q'ty
1	Scale Guide	1
2	DF Exposure Glass	1
3	Stud Screw	2
4	Knob Screw	2
5	Original Size Decal	2
6	Screwdriver Tool	1
7	Attention Decal-Top Cover	1

1.4.2 INSTALLATION PROCEDURE

\triangle CAUTION
 Unplug the copier power cord before starting the following procedure.

1. Remove the strips of tape.

B379I101.WMF
2. Remove the left scale $[A]$ (会 $\times 2$).
3. Place the DF exposure glass [B] on the glass holder. Make sure that the white mark [C] is on the bottom at the front end.
4. Peel off the backing [D] of the double-sided tape attached to the rear side of the scale guide [E], then install the scale guide ($\hat{\xi}^{2} \times 2$ [removed in step 2]).

B3791902.WMF
5. Install the two stud screws [F].
6. Mount the ARDF on the copier, then slide it to the front.
7. Secure the ARDF unit with the knob screws [G].
8. Connect the cable $[\mathrm{H}]$ to the copier.

B379I104.WMFWMF
9. Attach the appropriate original size decal [I] as shown.

B3791501.WMF
10. Attach an attention decal [A] to the top cover.
NOTE: The attention decals in the package are written in different languages.
11. Turn the main power switch on.
12. Check that the document feeder works properly.

B3791502.WMF
13. Make a full size copy, and check that the side-to-side and leading edge registrations are correct. If they are not, adjust the side-to-side and leading edge registrations. (3.13.3)

1.5 ADF INSTALLATION

1.5.1 ACCESSORY CHECK

Check the quantity and condition of the accessories against the following list.

No.	Description	Q'ty
1	Scale Guide	1
2	DF Exposure Glass	1
3	Stud Screw	2
4	Fixing Screw	2
5	Original Size Decal	2
6	Screwdriver Tool	1
7	Attention Decal-Top Cover	

1.5.2 INSTALLATION PROCEDURE

\triangle CAUTION
 Unplug the machine power cord before starting the following procedure.

1. Remove the strips of tape.

2. Remove the left scale [A] (会 $\times 2$).
3. Place the DF exposure glass [B] on the glass holder. Make sure that the white mark [C] is on the bottom at the front end.
4. Peel off the backing [D] of the double-sided tape attached to the rear side of the scale guide [E], then install the scale guide ($\mathcal{E}^{(1)} \times 2$ [removed in step 2]).
5. Install the two stud screws [F].
6. Mount the ADF on the copier, then slide it to the front.
7. Secure the ADF unit with the fixing screws [G].
8. Connect the cable $[\mathrm{H}]$ to the copier.
9. Attach the appropriate scale decal [I] as shown.

B387I104.WMFWMF

10. Attach an attention decal [A] to the top cover.
NOTE: The attention decals in the package are written in different languages.
11. Turn the main power switch on. Then check if the document feeder works properly.

12. Make a full size copy, and check that the side-to-side and leading edge registrations are correct. If they are not, adjust the side-to-side and leading edge registrations. (3.13.3).

1.6 TWO-TRAY PAPER TRAY UNIT INSTALLATION

1.6.1 ACCESSORY CHECK

Check the quantity and condition of the accessories against the following list.

No.	Description	Q'ty
1	Screw - M4x10	10
2	Unit Holder	4
3	Adjuster	1
4	Unit Holder	2

2

3

4

B3841500.WMF

1.6.2 INSTALLATION PROCEDURE

. CAUTION

1. If the optional fax unit is installed:

- Print out all messages stored in the memory.
- Print out the lists of user-programmed items.
- Print out the system parameter list.
- Disconnect the telephone line.

2. If the optional printer unit is installed:

- Print out all data in the printer buffer.
- Disconnect the network cable.

3. Unplug the machine power cord before starting the following procedure.
4. Remove the strips of tape. Make sure that you have removed all the strips of tape and all the pieces of cardboard.

B3841158.WMF
2. Attach the adjuster [A] to the base plate as shown.
NOTE: If a cabinet is installed, this step is unnecessary.

3. Remove the cover [B] (1 rivet).

CAUTION: Before placing the copier on the paper tray unit, make sure that the harness [C] is safe. The paper tray unit does not function properly if the harness is damaged.
4. Set the copier on the paper tray unit.

5. One-tray copier model (B121): Remove the 1st tray cassette [A].
Two-tray copier models (B122/B123):
Remove the 2nd tray cassette [A].
6. Install the two screws [B].
7. Reinstall the tray cassette.

8. Install the two brackets [C] (1 screw each).
9. Connect the connecting harness [D] to the copier.

NOTE: There are cutouts in the plug on both sides. The left side has one cutout, and the right side has two.
10. Reinstall the cover removed in step 3 (1 rivet).

11. Install the four brackets [E] (2 screws each).

NOTE: If a cabinet is installed, this step is unnecessary.

B384I007.WMF
12. Rotate the adjuster [A] to fix the machine in place.
NOTE: If a cabinet is installed, this step is unnecessary.

13. Load the paper in the paper trays and make full size copies from each tray. Check if the side-to-side and leading edge registrations are correct. If they are not, adjust the registrations (-3.13).

1.7 ONE-TRAY PAPER TRAY UNIT INSTALLATION

1.7.1 ACCESSORY CHECK

Check the quantity and condition of the accessories against the following list.

No.	Description	Q'ty
1	Screw $-\mathrm{M} 4 \times 10$	2
2	Stepped Screw $-\mathrm{M} 4 \times 10$	2
3	Unit Holder	2

1

2

B3851500.WMF

1.7.2 INSTALLATION PROCEDURE

©CAUTION

1. If the optional fax unit is installed:

- Print out all messages stored in the memory.
- Print out the lists of user-programmed items.
- Print out the system parameter list.
- Disconnect the telephone line.

2. If the optional printer unit is installed:

- Print out all data in the printer buffer.
- Disconnect the network cable.

3. Unplug the machine power cord before starting the following procedure.
4. Remove the strips of tape. Make sure that you have removed all the strips of tape and all the pieces of cardboard.

5. Remove the cover [A] (1 rivet).

CAUTION: Before placing the copier on the paper tray unit, make sure that the harness $[B]$ is safe. The paper tray unit does not function properly if the harness is damaged.
3. Set the copier on the paper tray unit.

B385I112.WMF
4. One-tray copier model (B121):

Remove the 1st tray cassette [C].

Two-tray copier models

(B122/B123):
Remove the 2nd tray cassette [C].

5. Install the two screws [A].
6. Reinstall the tray cassette.

7. Install the two brackets [B]. (1 stepped screw each).
8. Connect the connecting harness [C] to the copier.

NOTE: There are cutouts in the plug on both sides. The left side has one cutout, and the right side has two.
9. Reinstall the cover removed in step 2.

10. Load the paper in the paper tray and make full size copies from tray. Check if the side-to-side and leading edge registrations are correct. If they are not, adjust the registrations (-13).

1.8 ONE-BIN TRAY INSTALLATION

1.8.1 ACCESSORY CHECK

Check the quantity and condition of the accessories.

No.	Description	Q'ty
1	Installation procedure	1
2	One-bin sorter	1
3	Exit tray	1
4	Tapping screw $\mathrm{M} 3 \times 6$	1

1.8.2 INSTALLATION PROCEDURE

\triangle CAUTION
 Unplug the machine power cord before starting the following procedure.

For B123 only (For B122, go to step 3.)

1. Remove the inverter tray $[A]$.
2. Remove the rail [B] (2 knob screws).
3. Remove the cover [C] (1 rivet).

B621I902.WMF
4. Open the front cover $[A]$.
5. Remove the front right cover [B] ($\mathrm{K}_{\mathrm{B}} \times 1$).
6. Disconnect the connector [C].
7. Cut the front cover as shown, to make an opening [D] for the 1-bin tray.

[G]
8. Install the 1-bin tray [E].
9. Make sure the connectors [F] are connected firmly.
10. Fasten the screw.
11. Connect the connector [G] that you removed in step 6.

NOTE: Make sure that the connector is connected.

12. Reattach the front right cover $[A]$.
13. Close the front cover [B].
14. Install the exit tray [C] as follows:
(1) Keep the front end higher than the rear end.
(2) Push the left hook into the opening in the copier.
(3) Push the right hook into the opening in the copier.
15. Pull the support [D] out of the left end of the exit tray.
16. Insert the support into the left end of the paper exit tray [E] (of the copier).
17. Turn the main switch on.
18. Check the operation.

1.9 ANTI-CONDENSATION HEATER INSTALLATION

| \uparrow CAUTION |
| :--- | :--- |
| Unplug the machine power cord before starting the following procedure. |

1. Remove the exposure glass (-3.4.1).
2. Remove the left cover (-3.3 .8).
3. Pass the connector $[A]$ through the opening $[B]$.
4. Install the anti-condensation heater [C], as shown.
5. Join the connectors $[A, D]$.
6. Clamp the harness with the clamp [E].
7. Reinstall the left cover and exposure glass.

1.10 TRAY HEATERS

| \triangle CAUTION |
| :--- | :--- |
| Unplug the machine power cord before starting the following procedure. |

1.10.1 UPPER TRAY HEATER

1. Remove the 1 st tray cassette [A].
2. Remove the rear cover (1.12).

3. Pass the connector $[B]$ through the opening [C] and install the tray heater [D] (氞 x 1).

4. Install the relay cable [E].
5. Fix the cable with the clamp [F].
6. Reinstall the 1 st tray cassette and the rear cover.

B121I121.WMF

1.10.2 LOWER TRAY HEATER (TWO-TRAY MODEL ONLY)

1. Remove the $2 n d$ tray cassette $[A]$.
2. Remove the rear lower cover (3.3.2).
3. B123 only:

4. Pass the connector [C] through the opening [D] and install the tray heater [E] (身 $\times 1$).
5. Join the connectors $[\mathrm{F}, \mathrm{G}]$.
6. Reinstall the 2nd tray cassette, DCB, and rear lower cover.

1.10.3 TRAY HEATERS FOR THE OPTIONAL PAPER FEED UNITS

1. Remove the rear cover for the paper tray unit $[A]$ ($\hat{\xi}^{(1)} \times 2$).

2. Two-tray unit only: Remove the cable guide $[B]$ ($\mathcal{E}^{2} \times 1$).
3. Install the clamps [C].

- Two-tray paper feed unit -

4. Pass the connector [A] through the opening $[B]$.
5. Install the tray heater [C] (

- Two-tray paper feed unit - [B]

6. Clamp the cables $[A]$, as shown.
7. Join the connectors $[B]$.
8. Two-tray unit only: Reinstall the cable guide.
9. One-tray copier model (B121): Remove the 1st tray cassette.
Two-tray copier models (B122/B123):
Remove the 2nd tray cassette.

- One-tray paper feed unit -

[B]
- Two-tray paper feed unit -

[A] B1211006.WMF

10. Remove the two screws [C] and install the two hexagonal socket screws [D].
11. Reinstall the 1st tray and rear cover.

1.11 KEY COUNTER INSTALLATION

| \triangle CAUTION |
| :--- | :--- |
| Unplug the machine power cord before starting the following procedure. |

B1211100.WMF

1. Remove the left cover (3.3.8).
2. Remove the rear cover (3.3.1).
3. Remove the cap $[A]$ with nippers.
4. Punch out the small hole $[B]$ using a screwdriver.
5. Hold the key counter plate nuts [C] on the inside of the key counter bracket [D] and insert the key counter holder [E].
6. Secure the key counter holder to the bracket (
7. Install the key counter cover $[F](\hat{\xi} \times 2)$.

8. Connect the connector [A] to CN126 on the BICU.
9. Install the clamps [B].
10. Hold the cable with the clamps $[B][C][D]$. NOTE: The relay cable is not included in the key counter bracket accessories.
11. Join the relay cable [E] with the connector [F].
12. Reinstall the rear cover.
13. Pass the relay cable through the opening [G] and reinstall the left cover.
14. Install the stepped screw $[\mathrm{H}]$.
15. Join the connectors [I][J].
16. Pass the joined connectors through the opening of the key counter holder assembly $[K]$, and put the connectors inside the assembly.
17. Hook the key counter holder assembly onto the stepped screw $[\mathrm{H}]$. Check that the cable is not caught between the left cover and the key counter holder assembly.
18. Secure the key counter holder assembly with the screw [L].

1.12 MFP EXPANSION

The controller box and the fax unit contain lithium batteries. The danger of explosion exists if a battery of this type is incorrectly replaced. Replace only with the same or an equivalent type recommended by the manufacturer. Discard batteries in accordance with the manufacturer's instructions and local regulations.

This section (1.12) includes the installation procedures for the optional controller box, optional printer scanner, and optional fax. See each step as necessary.

Machine Configuration	Reference		
	Component	Panel and Key	Settings
Printer/scanner	Steps $1 \rightarrow 2 \rightarrow 5$	Steps $6 \rightarrow 7$	Steps 10
Printer/scanner + PostScript 3	Steps $1 \rightarrow 2 \rightarrow 3 \rightarrow 5$	Steps $6 \rightarrow 7$	Steps 10
Fax	Steps $1 \rightarrow 4 \rightarrow 5$	Steps $6 \rightarrow 8$	Steps $10 \rightarrow 11$
Printer/scanner + Fax	Steps $1 \rightarrow 2 \rightarrow 4 \rightarrow 5$	Steps $6 \rightarrow 9$	Steps $10 \rightarrow 11$
Printer/scanner + PostScript 3 + Fax	Steps $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$	Steps $6 \rightarrow 9$	Steps $10 \rightarrow 11$

1.12.1 ACCESSORY CHECK

	No.	Description	Q'ty
Controller Box	1	Installation procedure	1
	2	Controller box	1
	3	Operation panel	1
	4	Key top-copier	2
	5	Expansion decal	1
	6	Screw M3 x 8	1
	7	Tapping screw M3 x 6	6
Printer Scanner	1	Installation procedure	1
	2	Dummy cover-fax	1
	3	Key top-printer	2
	4	Key top-scanner	2
	5	Cover-printer	1
	6	USB board	1
	7	SD card	1
	8	RAM DIMM	1
	9	Ferrite core	1
	10	Operating instructions	1
	11	FCC label	1
Fax	1	Installation procedure	1
	2	Dummy cover	1
	3	Key top-fax	2
	4	Cover-fax	1
	5	Right cover-fax	1
	6	FCU	1
	7	Stamp	1
	8	SG3 label	1
	9	Handset bracket (-17)	1
	10	Modular code (-17)	1
	11	User function key decal (-17, -29)	1
	12	Operating Instructions (-17, -29)	1
	13	Ferrite core (except -17)	1
	14	Connector cover	1
PostScript 3	1	PS3 card	1
	2	PS3 label	1

1.12.2 INSTALLING EXPANSION COMPONENT

\triangle CAUTION
Unplug the machine power cord before starting the following procedure.

Step 1-Controller Box

1. Remove the rear cover $[A](\hat{\xi} \times 6)$.
2. Remove the slot cover $[B](\hat{\xi} \times 1)$.
3. Remove one screw [C] from the BICU.

B6581901.WMF
4. Connect the controller box [D] to the BICU. Make sure that the BICU is not damaged $[E]$ and that the three openings [F][G][H] hold the controller box.
5. Fasten the screws ($\hat{\xi}^{(1)} \times 7$ [including the screw [C]]).
6. Remove the FCU cover $[1](\hat{\xi} \times 3)$.

Step 2-Printer/Scanner

1. Remove the controller-box cover [A] (
2. Install the RAM DIMM [B].
3. Remove the SD-card cover [C] (䈱 $\times 1$).
4. Install the SD card [D] in the upper slot.

NOTE: The lower slot is for service work.
5. Install the SD-card cover.
6. Remove the slot cover $[E](\hat{\xi} \times 2)$
7. Install the USB board $[F]\left(\mathcal{F}^{1} \times 2\right)$.
8. Attach the ferrite core [G] to the network cable $[\mathrm{H}]$. The end of the ferrite core must be about 15 cm ($6 "$) from the end of the cable [I].
9. USA model only: Attach the FCC label [J] at the right-hand side of the USB connector on the controller box.

Step 3-PostScript

Install the PS3 card [A] in the DIMM socket [B].

Step 4-Fax

1. Install the FCU $[A]$ into the slot $(\hat{\beta} \times 3$ [including the screw [B] removed in Step 1]).
2. Short the jumper [C].

NOTE: This jumper is the battery switch.
3. Attach the connector cover [D] if you do not connect a LAN able.
4. Attach the ferrite core [E] to the telephone cable [F]. The end of the ferrite core must be about $5 \mathrm{~cm}(2 ")$ from the end of the cable [G].

Initializing the Fax Unit

When you press the Fax key for the first time after installation, an error occurs. This is not a functional problem. Press OK. The fax starts its initialization program.

NOTE: If another error occurs after initialization, this can be a functional problem.

Step 5-Reassembling

1. Reassemble the controller box.
2. Install the rear cover.

1.12.3 INSTALLING PANELS AND KEYS

Step 6-Panel

1. Remove the front upper left cover [A] (象 $\times 3$).
2. Install the optional operational panel $[B]$ ($⿷^{\|} \times 1$, ${ }^{-1} \times 4$ [including three screws removed in step 1]).
If installing the printer/scanner only, do step 7.

If installing the fax only, do step 8.
B6581908.WMF
If installing both the printer/scanner and the fax, do step 9.

Step 7-Printer/Scanner Keys

1. Remove the dummy cover (from the basic operation panel) and install the copy key [A] or [a].
2. Remove the dummy panel (from the basic operation panel) and install the printer panel $[\mathrm{B}]$.
3. Install the scanner key [C] or [c] on the optional operation panel.
4. Install the dummy panel [D] on the optional operation panel.
5. Install the printer key $[\mathrm{E}]$ or [e] on the basic operation panel.

Step 8-Fax Keys

1. Remove the dummy cover (from the basic operation panel) and install the copy key [A] or [a].
2. Remove the dummy panel (from the basic operation panel) and install the fax panel [B].
3. Install the dummy cover [C] on the optional operation panel.
4. Install the fax panel [D] on the optional operation panel.
5. Install the fax key $[E]$ or [e] on the optional operation panel.

Step 9-Printer/Scanner and Fax Keys

1. Remove the dummy cover (from the basic operation panel) and install the copy key [A] or [a].
2. Remove the dummy panel (from the basic operation panel) and install the fax panel [B].
3. Install the scanner key [C] or [c] on the optional operation panel.
4. Install the fax panel $[D]$ on the optional operation panel.
5. Install the fax key [E] or [e] on the optional operation panel.
6. Remove the dummy panel (from the basic panel) and install the printer panel [F].
7. Install the printer key [G] or [g] on the basic operation panel.

1.12.4 SETTINGS

Step 10-MFP Settings and Time Settings

1. Turn the main switch on.
2. Start the SP mode.
3. Select SP5-801-001 and execute the initialization.
4. Turn the main switch off and on.
5. Start the SP mode.
6. Select SP5-302-002 and specify the time zone.
7. Select SP5-307-001, 003, and 004 and specify the daylight-saving-time settings.

Step 11-Fax Settings

1. Select fax SP1-101-016 and specify the system switch.
2. Select fax SP3-101-001 and specify the service station.

1.13 IEEE1284/IEEE1394 INTERFACE

| \triangle CAUTION |
| :--- | :--- |
| Unplug the machine power cord before starting the following procedure. |

NOTE: 1) Before installing the IEEE1284 interface, install the optional printer scanner.
2) One slot is available. You can install one of the IEEE1284 interface, IEEE1394 interface, wireless LAN interface, and Bluetooth interface.

1. Remove the slot cover $[A]\left(\mathcal{E}^{2} \times 2\right)$.
2. Install the interface board $[B](\hat{\xi} \times 2)$.

1.13.1 ACCESSORY CHECK

Check the quantity and condition of the accessories.

No.	Description	Q'ty
1	Wireless LAN card	1
2	Wireless LAN card cover	1
3	Wireless LAN board	1

1.13.2 INSTALLATION PROCEDURE

\triangle CAUTION
 Unplug the machine power cord before starting the following procedure.

NOTE: 1) Before installing the optional wireless LAN (IEEE 802.11b), install the optional printer scanner.
2) One slot is available. You can install one of the IEEE1284 interface, IEEE1394 interface, wireless LAN interface, and Bluetooth interface.

1. Remove the slot cover $[A](\hat{\xi} \times 2)$.
2. Install the wireless LAN (IEEE 802.11b) board [B] ($\hat{\beta}^{\prime} \times 2$).
3. Reattach the rear cover.

B6821901.WMF
4. With the card label facing left, insert the card [A] into the PCl slot.
5. Attach the cover [B].

6. If reception is poor, you may need to move the machine:

- Make sure that the machine is not located near an appliance or any type of equipment that can generate a strong magnetic field.
- Position the machine as close as possible to the access point.

UP Mode Settings for Wireless LAN

Enter the UP mode and follow the procedure below to perform the initial interface settings for IEEE 802.11b. These settings take effect every time the machine is powered on.
NOTE: The wireless LAN cannot be used if Ethernet is being used.

1. Press the User Tools/Counter key.
2. On the touch panel, press System Settings.

NOTE: The Network I/F (default: Ethernet) must be set for either Ethernet or wireless LAN.
3. Select Interface Settings \rightarrow Network (tab) \rightarrow LAN Type
4. Select either "Ethernet" or "IEEE 802.11b".
5. Press IEEE 802.11b. Only the wireless LAN options are displayed.
6. Transmission Mode. Select either "Ad Hoc Mode" or "Infrastructure Mode".
7. SSID Setting. Enter the SSID setting. (The setting is case sensitive.)
8. Channel. This setting is required when Ad Hoc Mode is selected.

Range: 1 ~ 14 (default: 11)
NOTE: The allowed range for the channel settings may vary for different countries.
9. WEP (Privacy) Setting. The WEP (Wired Equivalent Privacy) setting is designed to protect wireless data transmission. In order to unlock encoded data, the same WEP key is required on the receiving side. There are 64 bit and 128 bit WEP keys.

Range of Allowed Settings:
64 bit 10 characters
128 bit 26 characters
10. Bandwidth Status. This setting is enabled only for the Infrastructure Mode. Press here to display the current status of the bandwidth. One of the following is displayed to reflect the reception status of the wireless LAN:

Good

$$
76 ~ 100 \%
$$

Fair

$$
41 ~ 75 \%
$$

Poor
21 ~ 40\%
Unavailable $0 \sim 20 \%$
11. Transmission Speed. Press the Next button to display more settings, then select the transmission speed for the mode: Auto, 11 Mbps , 5.5 Mbps , 2 Mbps , 1 Mbps (default: Auto). This setting should match the distance between the closest machine or access point, depending on which mode is selected.
NOTE: For the Ad Hoc Mode, this is the distance between the machine and the closest PC in the network. For the Infrastructure Mode, this is the distance between the machine and the closest access point.

11 Mbps 140 m (153 yd.)
5.5 Mbps 200 m (219 yd.)

2 Mbps 270 m (295 yd.)
1 Mbps 400 m (437 yd.)
12. To initialize the wireless LAN settings, use page 2/2. Press Execute to initialize the following settings:

- Transmission mode
- Channel
- Transmission Speed
- WEP
- SSID
- WEP Key

SP Mode Settings for IEEE 802.11b Wireless LAN

The following SP commands can be set for IEEE 802.11b

SP No.	Name	Function
5840004	SSID	Used to confirm the current SSID setting.
5840006	Channel MAX	Sets the maximum range of the channel settings for the country.
5840007	Channel MIN	Sets the minimum range of the channels settings allowed for your country.
5840011	WEP Key Select	Used to select the WEP key (Default: 00).
5840018	SSID Check	Used to check the SSID.
5840020	WEP Mode	Used to display the maximum length of the string that can be used for the WEP Key entry.

1.14 BLUETOOTH

1.14.1 ACCESSORY CHECK

Check the quantity and condition of the accessories.

No.	Description	Q'ty
1	Bluetooth card	1
2	Bluetooth card cover	1
3	Bluetooth board	1

1.14.2 INSTALLATION PROCEDURE

\triangle CAUTION
 Unplug the machine power cord before starting the following procedure.

NOTE: 1) Before installing the optional Bluetooth, install the optional printer scanner.
2) One slot is available. You can install one of the IEEE1284 interface, IEEE1394 interface, wireless LAN interface, and Bluetooth interface.

1. Remove the slot cover $[A]\left(\hat{S}^{2} \times 2\right)$.
2. Install the Bluetooth board [B] on the controller board ($\mathcal{E}^{(1)} \times 2$).
3. Reattach the rear cover.

4. Insert the Bluetooth card $[A]$ into the slot.
5. Press the antenna $[B]$ to extend it.
6. Attach the antenna cap [C].

2. PREVENTIVE MAINTENANCE

2.1 PM TABLES

NOTE: 1) After preventive maintenance work, reset the PM counter (SP7-804001).
2) PM intervals $(60 \mathrm{k}, 80 \mathrm{k}$, and 120 K$)$ indicate the number of prints.

Key: AN: As necessary
C: Clean
R: Replace
L: Lubricate
I: Inspect
Optics

	EM	$\mathbf{6 0 k}$	$\mathbf{1 2 0 k}$	AN	NOTE
Reflector	C				Optics cloth
1st mirror	C			C	Optics cloth
2nd mirror	C			C	Optics cloth
3rd mirror	C			C	Optics cloth
Scanner guide rails	C				Do not use alcohol.
Platen cover	I			C	Replace the platen sheet if necessary. Blower brush or alcohol
Exposure glass	C			C	Blower brush or alcohol
Toner shield glass	C				Blower brush
APS sensors	C				Blower brush

Drum Area

	EM	60k	120k	AN	NOTE
PCU		I			
Drum		R			
Developer		R			
Charge roller		R			
Cleaning brush (charge roller)		R			
Cleaning blade (OPC drum)		R			
Pick-off pawls		R			
Transfer roller			R		
ID sensor	C			C	Blower brush

Paper Feed

	EM	$\mathbf{6 0 k}$	$\mathbf{1 2 0 k}$	AN	NOTE
Paper feed roller (each tray)		C	R	C	Clean with water or alcohol.
Friction pad (each tray)		C	R	C	Clean with water or alcohol.
Bottom-plate pad (each tray)		C		C	Clean with water or alcohol.
Paper feed roller (bypass tray)		C		C	Clean with water or alcohol.
Friction pad (bypass tray)		C		C	Clean with water or alcohol.
Bottom-plate pad (by-pass tray)		C		C	Clean with water or alcohol.
Registration rollers		C		C	Clean with water or alcohol.
Relay rollers		C		C	Clean with water or alcohol.
Paper feed guides		C		C	Clean with water or alcohol.
Paper-dust Mylar		C		C	Clean with water or alcohol.

Fusing Unit

	EM	$\mathbf{6 0 k}$	$\mathbf{1 2 0 k}$	AN	
Hot roller			R		
Pressure roller			R		
Pressure roller cleaning roller			R		
Hot roller bushings			I		
Pressure-roller bushing			R		
Hot roller stripper pawls			R	C	Dry cloth
Thermistor	C		C	Dry cloth	

ADF/ARDF

	$\mathbf{8 0 k}$	AN	NOTE
Feed belt	R	C	Clean with water or alcohol.
Separation roller	R	C	Clean with water or alcohol.
Pick-up roller	R	C	Clean with water or alcohol.
Stamp		R	Replace when necessary.
White plate		C	Clean with water or alcohol.
DF exposure glass		C	Clean with water or alcohol.
Platen cover	C	Clean with water or alcohol.	

Paper Tray Unit

	$\mathbf{6 0 k}$	$\mathbf{1 2 0 k}$	AN	NOTE
Paper feed rollers		R	C	Dry or damp cloth
Bottom-plate pads	C		C	Dry cloth
Paper-feed guides	C		C	Clean with water or alcohol.
Friction pads		R	C	Dry or damp cloth
Relay clutch (B384 only)		I		
Feed clutches (B384 only)		I		
Relay roller (B384 only)		C	C	Dry cloth

2.2 HOW TO RESET THE PM COUNTER

After preventive maintenance work, reset the PM counter (SP7-804-001) as follows.

1. Activate the SP mode (see section 5.1).
2. Select SP 7-804-001 ("Reset-PM Counter").
3. Press the OK key [A]. The message "Execute" is displayed.

4. Press the button $[B]$ below the message "Execute." The messages "Execute?" followed by "Cancel" and "Execute" are displayed.

5. To reset the PM counter, press the button [C] below the message "Execute."

6. Wait until the message "Completed" is displayed.
7. Quit the SP mode.

B121P901.WMF

3. REPLACEMENT AND ADJUSTMENT

3.1 GENERAL CAUTIONS

Do not turn off the main switch while any of the electrical components are active. Doing so may result in damage to units (such as the PCU) as they are pulled out or replaced.

3.1.1 PCU (PHOTOCONDUCTOR UNIT)

The PCU consists of the OPC drum, charge roller, development unit, and cleaning components. Observe the following precautions when handling the PCU.

1. Never touch the drum surface with bare hands. If the drum surface is dirty or if you have accidentally touched it, wipe it with a dry cloth, or clean it with wet cotton and then wipe it dry with a cloth.
2. Never use alcohol to clean the drum. Alcohol will dissolve the drum surface.
3. Store the PCU in a cool dry place.
4. Do not expose the drum to corrosive gases (ammonia, etc.).
5. Do not shake a used PCU, as this may cause toner and developer to spill out.
6. Dispose of used PCU components in accordance with local regulations.

3.1.2 TRANSFER ROLLER

1. Never touch the surface of the transfer roller with bare hands.
2. Be careful not to scratch the transfer roller, as the surface is easily damaged.

3.1.3 SCANNER UNIT

1. Use alcohol or glass cleaner to clean the exposure and scanning glass. This will reduce the static charge on the glass.
2. Use a blower brush or a water-moistened cotton pad to clean the mirrors and lenses.
3. Take care not to bend or crease the exposure lamp's ribbon cable.
4. Do not disassemble the lens unit. Doing so will throw the lens and copy image out of focus.
5. Do not turn any of the CCD positioning screws. Doing so will throw the CCD out of position.

3.1.4 LASER UNIT

1. Do not loosen or adjust the screws securing the LD drive board on the LD unit. Doing so will throw the LD unit out of adjustment.
2. Do not adjust the variable resistors on the LD unit. These are adjusted at the factory.
3. The polygonal mirror and F-theta lens are very sensitive to dust.
4. Do not touch the toner shield glass or the surface of the polygonal mirror with bare hands.

3.1.5 FUSING UNIT

1. After installing the fusing thermistor, make sure that it is in contact with the hot roller and that the roller can rotate freely.
2. Be careful to avoid damage to the hot roller stripper pawls and their tension springs.
3. Do not touch the fusing lamp and rollers with bare hands.
4. Make sure that the fusing lamp is positioned correctly and that it does not touch the inner surface of the hot roller.

3.1.6 PAPER FEED

1. Do not touch the surface of the paper feed rollers.
2. To avoid misfeeds, the side and end fences in each paper tray must be positioned correctly so as to align with the actual paper size.

3.1.7 IMPORTANT

1. After installing a new PCU, you must run SP2-214 to initialize the TD sensor. After starting initialization, be sure to wait for it to reach completion (wait for the motor to stop) before re-opening the front cover or turning off the main switch.
2. If the optional tray heater or optics anti-condensation heater is installed, keep the copier's power cord plugged in even while the main switch is off, so that the heater(s) remain energized.

3.2 SPECIAL TOOLS AND LUBRICANTS

Part Number		Description
A0069104	Scanner Positioning Pins (4 pins/set)	1 set
A2929500	Test Chart S5S (10 pcs/set)	1 set
A0299387	FLUKE 87 Digital Multimeter	1
A2309352	4MB Flash Memory Card	1
A2579300	Grease Barrierta S552R	1
52039502	Grease G-501	1
B0399099	NVRAM - Minus Counter	1
G0219350	Loop-back Connector	1
B6455010	SD-Card: Ass'y	1
B6456700	SD-Card: Adapter: BN-SDAA2	1
B6456800	AD-Card: USB: Writer: BN-SDCE2	1

3.3 EXTERIOR COVERS \& OPERATION PANEL

3.3.1 REAR COVER

1. Unplug the DF cable $[A]$ (if installed).
2. Rear cover $[B](\mathbb{E} \times 6)$

3.3.2 REAR LOWER COVER (TWO-TRAY MODELS ONLY)

1. Rear cover (-3.3.1) or tray harness cover [A] (1 rivet).
2. Rear lower cover $[B](\hat{\xi} \times 2)$

B121R902.WMF

3.3.3 COPY TRAY

1. Copy tray $[A](\hat{\xi} \times 2)$

3.3.4 UPPER COVERS

B121R904.WMF

1. Platen cover, ARDF, or ADF (if installed)
2. Rear cover (3.3.1)
3. Left upper cover $[A](\hat{\xi} \times 2)$
4. Front upper left cover $[B]\left(\begin{array}{ll}\text { 舟 } \times 3)\end{array}\right.$

5. Right upper cover [D] ($\hat{\xi}^{3} \times 1,3$ hooks)

NOTE: Push the cover to the rear side to release the hooks.
7. Top rear cover $[E]\left(\mathcal{S}^{2} \times 1\right)$

3.3.5 LEFT COVER

1. Left cover $[A](\hat{\xi} \times 3)$

3.3.6 FRONT COVER

1. Pull out the (top) paper tray.
2. Open the front door $[A]$.
3. Front cover $[B]\left(\begin{array}{c}\hat{\xi}\end{array} \times 4\right)$

3.3.7 FRONT RIGHT COVER

1. Open the front door $[A]$.
2. Front right cover $[B]\left(\begin{array}{l}\text { 佥 }\end{array} \times 1\right)$

3.3.8 RIGHT REAR COVER

1. Right upper cover (-3.3.4)
2. Open the duplex unit (B123 only).
3. Right rear cover $[A](\hat{\xi} \times 1)$

B121R947.WMF

3.3.9 RIGHT DOOR (B121/B122)/DUPLEX UNIT (B123)

B121R917.WMF

1. Right rear cover (-3.3 .8)
2. Open the right door $[A]$.
3. Open the clamps $[B]$ and disconnect the two connectors (B121/B122) $[C]$ or three connectors (B123).
4. Right door

3.3.10 BY-PASS TRAY

B121R948.WMF

1. Right rear cover (-3.3.8)
2. Open the right door (-3.3 .9).
3. Release the by-pass tray cable from the clamps (see [C] on the preceding page) and disconnect the connector (5-pin connector with colored wires).
4. Cable holder [A] (B123 only)
5. Front-side clip ring $[B]$
6. Front-side pin [C]

NOTE: You can push the pin from behind the right door.
7. Front-side tray holder arm [D]
8. Remove the rear-side clip ring, pin, and tray holder arm in the same manner.
9. By-pass tray [E]

3.3.11 LEFT LOWER COVER (TWO-TRAY MODELS ONLY)

1. Left lower cover $[A](\hat{\xi} \times 2)$

B121R908.WMF

3.3.12 RIGHT LOWER COVER (TWO-TRAY MODELS ONLY)

1. Open the right lower cover [A].
2. Right lower cover (1 rivet)

3.3.13 PLATEN COVER SENSOR

1. Top rear cover (-3.3 .4)
2. Platen cover sensor $[A](E \mathbb{E} \times 1)$

B121R909.WMF

3.4 SCANNER UNIT

3.4.1 EXPOSURE GLASS/DF EXPOSURE GLASS

Exposure Glass

1. Front upper left cover (-3.3 .4)
2. Left scale $[A](\hat{\xi} \times 2)$
3. Rear scale $[B]\left(\mathcal{S}^{2} \times 3\right)$
4. Exposure glass [C]

NOTE: When reinstalling, make sure that the mark is at the rear left corner, and that the left edge is aligned to the support on the frame.

DF Exposure Glass

1. Front upper left cover (-3.3.4)
2. Left scale [A]
3. DF exposure glass [D]

NOTE: When reinstalling, make sure that the mark $[E]$ is on the bottom.

3.4.2 LENS BLOCK

CAUTION: 1) Do not touch the paint-locked screws on the lens block. The position of the lens assembly (black part) is adjusted before shipment.
2) Do not grasp the PCB or the lens assembly when handling the lens block. The lens assembly may slide out of position.

1. Exposure glass (-3.4 .1)
2. Lens cover $[A](\hat{\xi} \times 5)$
3. Disconnect the flat cable $[B]$.
4. Lens block [C] (

After installing a new lens block, adjust the image quality (3.13).

[B]

3.4.3 LAMP STABILIZER BOARD AND EXPOSURE LAMP

1. Operation panel (-3.3 .4)
2. Exposure glass $(-3.4 .1)$
3. Slide the first scanner to a position where the front end of the lamp is visible.
4. Place one hand under the lamp stabilizer board [A] and release the hook [B].
5. Lamp stabilizer board (
6. Press the plastic latch [C] and
 push the front end of the lamp toward the rear.
7. Lamp [D] (with the cable)

3.4.4 ORIGINAL WIDTH/LENGTH SENSOR

1. Exposure glass (-3.4.1)
2. Original width sensor [A]

3. Lens block (-3.4.2)
4. Original length sensor $[B]$ (角 $\times 1$, 気 $\mathrm{E} \times 1$)

Sensor Positions

Sensor positions vary according to regions as shown below.

- Asia (including Taiwan; excluding China), Europe
- America

- China (Sensor Positions for China Model (8K/16K))

Sensor Positions for China Model (8K/16K)

This procedure is for China models only. You rearrange the positions of the original width and length sensors for the copier to detect the following original sizes:

- 8K SEF ($270 \times 390 \mathrm{~mm}$)
- 16K SEF ($195 \times 270 \mathrm{~mm}$)
- 16K LEF ($270 \times 195 \mathrm{~mm}$)

After you have rearranged the positions, the sensors work as listed in the table. Rearrange the sensor positions as follows:

Origina Size	Length Sensors		Width Sensors	
	L1	L2	W1	W2
8 K-SEF	\boldsymbol{X}	\boldsymbol{X}	\boldsymbol{X}	\bigcirc
$16 K-S E F$	\boldsymbol{X}	\bigcirc	\bigcirc	\bigcirc
16K-LEF	\bigcirc	\bigcirc	\boldsymbol{X}	\bigcirc

\boldsymbol{X} : Original present O : Original not present

1. Specify SP mode settings:

Select SP4-305-001, and specify 2 (=Yes). The machine will detect 8K/16K rather than A3/A4/B4/B5 (A3-SEF/B4-SEF \rightarrow 8K-SEF; B5-SEF/A4-SEF \rightarrow 16K-SEF; B5-LEF/A4-LEF \rightarrow 16K-LEF).
2. Turn off the main switch.
3. Exposure glass (-3.4.1).
4. Original width/length sensors $[A][B]$

B121R957.WMF
5. Rearrange the sensor positions [C][D].
6. Turn on the main switch and check the operations.

3.4.5 SCANNER MOTOR

1. Left upper cover, front upper left cover, operation panel, top rear cover (3.3.4)
2. Exposure glass (-3.4 .1)
3. Rear exhaust fan $[\mathrm{A}]$ (B123 only)
4. Scanner motor [B]
(${ }^{(1)} \times 3$, 気 $ل$ l $\times 1$, 1 spring, 1 belt)
NOTE: When reassembling, install the belt first, and set the spring next. Fasten the leftmost screw (viewed from the rear), and fasten the other two screws.

After installing the motor, adjust the image quality (-3.13).

3.4.6 SCANNER HOME POSITION SENSOR

1. Left upper cover, top rear cover (-3.3 .4)
2. Exposure glass, DF exposure glass (if installed) (3.4.1)
3. Disconnect the connector [C].
4. Scanner left lid [D] ($\hat{\xi}^{(1)} \times 7$)
5. Sensor tape [E].
6. Scanner home position sensor [F]

3.4.7 ADJUSTING SCANNER POSITIONS

\triangle CAUTION
 Grasp the front and rear ends (not the middle) of the first scanner when you manually move it. The first scanner may be damaged if you press, push, or pull its middle part.

Overview

Adjust the scanner positions when the first scanner [C] and second scanner [B] are not parallel with the side frames [A] or when you have replaced one or more of the scanner belts.

To adjust the scanner positions, do either of the following:

B121R959.WMF

- To adjust the belt contact points on the first scanner (Adjusting the First Scanner Contact Points)
- To adjust the belt contact points on the scanner bracket (Adjusting the Second Scanner Contact Points)

The two actions above have the same objectives-to align the following holes and marks:

- The adjustment holes [H][J] in the first scanner
- The adjustment holes $[H][J]$ in the second scanner
- The alignment marks [G][I] on the frames

The scanner positions are correct when these holes and marks are aligned.

Adjusting the First Scanner Contact Points

1. $A(R) D F$ or platen cover
2. Operation panel, top rear cover (3.3.4).
3. Exposure glass (3.4.1)
4. Loosen the 2 screws $[A][F]$.
5. Slide the 1st and 2nd scanners, or one of them, to align the following holes and marks (Overview):

- The adjustment holes in the first scanner
- The adjustment holes in the second scanner
- The alignment marks on the frames

6. Insert the positioning tools [D][E] through the holes and marks.
7. Check that the scanner belts $[B][C][G][H]$ are properly set between the bracket and the 1st scanner.
8. Tighten the screws $[A][F]$.
9. Remove the positioning tools.
10. Reassemble the machine and check the operation.

Adjusting the Second Scanner Contact Points

1. $A(R) D F$ or platen cover
2. Operation panel, top rear cover (3.3.4).
3. Exposure glass $(-3.4 .1)$
4. Rear exhaust fan $[A](\hat{\xi} \times 2)$
5. Controller bracket $[B](\hat{\xi} \times 3)$
6. Disconnect the platen-coversensor connector [C].
7. Rear frame [D] (会 $\times 7$)
[A]

[B]
[C]
B121R915.WMF
8. Scale bracket $[\mathrm{E}]\left(\begin{array}{c}\text { 雨 } \times 2)\end{array}\right.$

B121R961.WMF
9. Loosen the 2 screws [F].
10. Slide the 2nd scanner to align the following holes and marks (Overview):

- The adjustment holes in the first scanner
- The adjustment holes in the second scanner
- The alignment marks on the frames

11. Insert the positioning tools $[\mathrm{G}][\mathrm{H}]$ through the holes and marks.
12. Check that the scanner belts are properly set in the brackets.
13. Remove the positioning tools.
14. Reassemble the machine and check the operation.

3.5 LASER UNIT

\triangle WARNING
Laser beam can seriously damage your eyes. Be absolutely sure that the main power switch is off and that the machine is unplugged before accessing the laser unit.

3.5.1 LOCATION OF CAUTION DECAL

3.5.2 TONER SHIELD GLASS

1. Open the front door.
2. Lift the toner cartridge latch [A].
3. Press the toner shield glass cover $[B]$ to the left and pull it out.
4. Pull out the toner shield glass [C].
[B]

B121R964.WMF

3.5.3 LASER UNIT

1. Toner shield glass. (-3.5.2)
2. Copy tray (-3.3.3)
3. Pull out the (upper) paper tray.
4. Front cover (-3.3 .6)

NOTE: The screw at the left front position [E] is longer than the other three.

B121R965.WMF

3.5.4 LD UNIT

CAUTION: Do not touch the paint-locked screw [A]. The LD position is adjusted before shipment.

1. Laser unit (-3.5 .3)
2. LD unit $[A]\left(\mathcal{E}^{2} \times 1\right)$

NOTE: Do not screw the LD unit in too tightly when installing it.

3.5.5 POLYGONAL MIRROR MOTOR

1. Laser unit (-3.5.3)
2. Two rubber bushings [A]
3. Laser unit cover $[\mathrm{B}](\hat{\xi} \times 1)$
4. Polygonal mirror motor [C] ($\overline{(1)} \times 4$)
5. After reassembling, adjust the image quality (-3.13).
[B]

3.5.6 LASER UNIT ALIGNMENT ADJUSTMENT

© WARNING
 Reinstall the copy exit tray before turning the main switch on. The laser beam may go out of the copier when the copy exit tray is not installed. The laser beam can seriously damage your eyes.

1. Start the SP mode.
2. Select SP5-902-1 and output the "Trimming Area" pattern (pattern 10).
3. Check that the four corners of the pattern make right angles:

- If they make right angles, you do not need to adjust the laser unit alignment.
- If they do not make right angles, go on to the next step.

4. Check the screw position on the lever [A].

- If the screw is in the hole [C], go on to the next step.
- If the screw is in the slot [D], loosen the screw on the lever, loosen the four screws on the laser unit, and go on to step 9.

NOTE: The initial position of the screw is in hole [C].
5. Four screws in the laser unit (-3.5 .3)
6. Remove the lever ($\hat{\xi} \times 1$), confirm the

[C] B121R967.WMF position of the hole beneath the slot [D], and reinstall the lever.
7. Install the screw (through the slot [D]) loosely into the hole beneath the slot (do not tighten the screw).
8. Install the four screws for the laser unit loosely (do not tighten the screws).
9. When you rotate the lever clockwise or counterclockwise by one notch of the lever, the corners of the pattern shift by $\pm 0.4 \mathrm{~mm}$ (from the leading and trailing edges). See the trim pattern made in step 2, and find how much the corners should be shifted.
10. Tighten the screw $[\mathrm{A}]$.

11. Tighten the screws on the laser unit.
12. Reinstall the copy tray.
13. Print the trim pattern and check the result. If further adjustment is required, repeat this procedure.

3.6 PCU SECTION

3.6.1 PCU

1. Toner bottle with the holder [A]
2. Open the right door.

3. Press the latch $[B]$ and pull out the PCU [C].

NOTE: Do not touch the OPC drum surface with bare hands.
4. Load new developer (-3.6.6).
5. When reassembling, execute SP2-214 to reinitialize the TD sensor.

3.6.2 PICK-OFF PAWLS AND TONER DENSITY SENSOR

CAUTION: Do not turn the PCU upside down. This causes toner and developer to spill out.

1. $\mathrm{PCU}(-3.6 .1)$
2. Pawl [A]

NOTE: Pull down the pawl and release the bottom end.
3. Toner density sensor $[B](\hat{\xi} \times 1)$

NOTE: The toner density sensor is taped to the bottom of the PCU. Pry it off with a regular screwdriver
4. After reinstalling the pick-off pawls or
 toner density sensor, adjust the image quality (3.6.7).

3.6.3 OPC DRUM

1. $\mathrm{PCU}(-3.6 .1)$
2. Front side piece $[\mathrm{A}]\left(\begin{array}{l}\text { 全 } \times 1\end{array}\right)$
3. Rear side piece $[B]$ ($\hat{\xi}^{3} \times 2,1$ coupling)
4. Separate the drum section [C] from the developer section [D].

NOTE: To ensure that the left-side gears line up, keep the drum cover [E] closed when reinserting the front side piece.
5. Pry out the drum retaining clip [F].

NOTE: When reassembling, install the clip in the same orientation (with the lip facing away from the drum shaft).
6. OPC drum [G]
7. When reassembling, adjust the image quality (3.6.7).

3.6.4 CHARGE ROLLER AND CLEANING BRUSH

B121R973.WMF

1. OPC Drum (3.6.3)
2. Holding pin [A]
3. Stepped screw [B]
4. Charge roller [C] and cleaning brush [D] (with the holders and springs)

NOTE: Turn the gear [E] (as necessary) so that the rear holder [F] comes out.
5. When reassembling, adjust the image quality (3.6.7).

3.6.5 CLEANING BLADE

1. Drum charge roller (-3.6 .4)
2. Cleaning blade $[A](\hat{\xi} \times 2)$
3. When reassembling, adjust the image quality (3.6.7).

Reassembling

When replacing the cleaning blade, apply toner to the edge of the new cleaning blade. This prevents possible damage to the OPC drum and blade.

1. After installing the cleaning blade, remove some of the toner from the old blade with you finger.
2. Apply the toner to the edge $[B]$ of the new cleaning blade. Make sure to apply the toner evenly along full length of the new cleaning blade.

[B]

3.6.6 DEVELOPER

B121R975.WMF

B121R976.WMF

1. $\mathrm{PCU}(-3.6 .1)$
2. To let the toner fall to the development section, gently tap about eight different spots on the top of the PCU with a screwdriver. Each spot must be approximately at an equal distance from the next spot.
3. Reinstall the PCU in the copier.
4. Turn the main switch on.
5. Open and close the front door and wait for the machine to rotate the development roller for about 10 seconds.
6. Repeat the previous step two more times.
7. PCU (-3.6.1)
8. Separate the developer section from the OPC drum section (3.6.3).
9. Top part $[A]$ of the development unit ($\hat{(\hat{E}} \times 5$)

NOTE: Release the hook [B].
10. Set the coupling [C] back to the shaft.
11. Turn the coupling in the direction of the arrow [D] to remove developer from the roller.
12. Turn the bottom part [E] over and rotate the gears to remove the developer.
13. Load new developer (1.2.3).
14. When reassembling, execute SP2-214 to reinitialize the TD sensor.

NOTE: 1) Check that no toner or developer is stuck on a gear. Clean the gears as necessary with a blower brush, etc.
2) Be sure to replace the Mylar at the rear side in the correct position. (The Mylar protects the gears at the rear side from falling toner).

3.6.7 AFTER REPLACEMENT OR ADJUSTMENT

IMPORTANT: After replacing or adjusting any of the PCU components, do the following procedure. This procedure is not necessary when you replaced the whole PCU with a new one.

1. Take 5 sample copies.
2. If black dots (dropped toner) appear on any of the copies, continue as follows. (If all copies are clean, you don't need to carry out the following steps.)
3. Remove the PCU from the mainframe.
4. Tap the top of the PCU with a screwdriver at eight evenly spaced locations (two or three taps at each spot), to knock the recycled toner down into the development section.
5. Put the PCU back into the mainframe.
6. Turn the main power on. Then open and close the door and wait for the machine to rotate the development roller for 10 seconds. Then open and close the door two more times, so that total rotation time is 30 seconds.
7. Make some sky-shot copies (or solid black prints).

- If using $A 4 / 81 / 2^{\prime \prime} \times 11^{\prime \prime}$ paper, make 4 copies/prints.
- If using $A 3 / 11^{\prime \prime} \times 17$ " paper, make 2 copies/prints.
- To make solid black prints, use SP5-902 pattern 8.

NOTE: Step 7 is required only after parts replacement or adjustment. There is no need to make sky-shot (or solid black) copies after replacing the developer.

3.7 TONER SUPPLY MOTOR

1. Copy tray (-3.3.3)
2. Open the front door.
3. Toner bottle holder (-3.6 .1)
4. Toner supply motor $[A]($ 気 Cl x 1)

3.8 PAPER FEED SECTION

3.8.1 PAPER FEED ROLLER

1. Paper cassette
2. Clip $[A]$
3. Push the shaft back through the opening, and tilt it up.
NOTE: If the black plastic bushing [B] comes off, be sure to remount it when reinstalling the shaft.
4. Paper feed roller [C]

3.8.2 FRICTION PAD

1. Paper cassette
2. Clip [D]
3. Push the shaft back through the opening, so that the roller moves clear of the friction pad.

4. Friction pad [E]

3.8.3 PAPER END SENSOR

1. Paper cassette
2. Paper end sensor $[F]\left(\mathrm{E}^{\boldsymbol{N}} \times 1\right.$)

3.8.4 EXIT SENSOR

Non-duplex Models

1. Open the right door.
2. Front right cover (-3.3.7)
3. Guide $[A]\left(\mathcal{E}^{2} \times 2\right)$
4. Exit sensor bracket $[B]\left(\begin{array}{c}\hat{\xi} \\ \times 1)\end{array}\right.$
5. Exit sensor [C] ($\mathrm{E}^{\|} \times 1$)

Duplex Models

1. Open the right door.
2. Front right cover (-3.3.7)
3. Upper guide [D] ($\hat{\xi} \times 2$)
4. Exit sensor bracket $[E]\left(\mathcal{N}^{2} \times 1\right)$
5. Exit sensor [F] (

B121R919.WMF

3.8.5 BY-PASS FEED ROLLER AND PAPER END SENSOR

1. By-pass tray (-3.3 .10)

NOTE: If you have a support to keep the by-pass tray within the reach of the connector cable, you do not need to disconnect the connector. When you do so, use caution not to place too much load on the cable.
2. Sensor holder $[A]$
3. By-pass paper end sensor $[B]$ ($⿷^{\| l l} \times 1$)
4. By-pass feed roller [C]

3.8.6 REGISTRATION ROLLER

1. $\mathrm{PCU}(-3.6 .1)$
2. Front cover (-3.3.6)
3. Right door (-3.3.9)
4. Rear cover (3.3.1)
5. High-voltage power supply (-3.12 .2)
6. Registration clutch (-3.8.8)
7. Unhook the springs $[A]$ and $[B]$ at the rear and front sides.
8. Guide support [C] and guide [D] ($\left(\mathbb{\xi} \times 1, \xi^{\#} \times 1\right)$
9. Bushing $[E]($ (3$) \times 1$)
10. Gear [F] and bushing [G] (© $\times 1$)
11. Registration roller $[\mathrm{H}]$ with the image transfer unit [I]

3．8．7 BY－PASS PAPER SIZE SWITCH

3．8．8 REGISTRATION CLUTCH

1．By－pass tray（－3．3．10）
2．Tray lever $[A](5) \times 1,1$ pin $)$
3．Lift the upper tray $[B]$
4．By－pass paper size switch［C］ （角×1）
NOTE：When reinstalling the switch： Move the paper guides to their middle position（about halfway between fully open and fully closed），and install the round gear so that the hole in the gear［D］aligns with the peg［ $E]$ on the sliding gear．

B121R983．WMF

［F］
B121R922．WMF

B121R984．WMF

1．Rear cover（－3．3．1）
2．High－voltage power supply board（with the bracket）$[F]$（ $\times 4$ ，all connectors）
3．Registration clutch［G］（《3）$\times 1, ⿷_{\mathbb{\#}}^{\boldsymbol{N}} \times 1$ ）

3.8.9 REGISTRATION SENSOR

1. Open the right door.
2. Registration sensor $[A]\left(⿷_{\| l} \times 1\right)$

3.8.10 UPPER PAPER FEED CLUTCH AND BY-PASS FEED CLUTCH

1. Rear cover (3.3.1)
2. High-voltage power supply board (-3.12.2)
3. Clutch cover $[B]$ ((3) $\times 2,2$ bushings, $\mathbb{E}^{2} \times 2$)
4. Paper feed clutch [C] ($(3) \times 1)$
5. By-pass feed clutch [D] (CS $\times 1$)

NOTE: When reinstalling, be sure that the rotation-prevention tabs [E] on the clutches fit correctly into the corresponding openings on the clutch cover.

[B]

3.8.11 RELAY CLUTCH

1. Rear cover (-3.3 .1)
2. Relay clutch $[\mathrm{A}]\left(\mathrm{E}^{\| l} \times 1\right)$

3.8.12 RELAY SENSOR

1. Relay clutch (-3.8 .11)
2. Sensor bracket $[B](\hat{\xi} \times 1)$
3. Relay sensor [C] (

3.8.13 LOWER PAPER FEED CLUTCH (TWO-TRAY MODELS ONLY)

1. Rear lower cover (-3.3 .2)
2. Clutch bracket $[\mathrm{D}]\left(\begin{array}{c}\hat{8} \times 2)\end{array}\right.$
3. Lower paper feed clutch $[E]$ ($(3) \times 2$, 1 bushing, 妞 $\times 1$)

3．8．14 VERTICAL TRANSPORT SENSOR（TWO－TRAY MODELS ONLY）

1．Right lower cover（－3．3．12）
2．Metal plate $[A]\left(\mathcal{E}^{2} \times 3\right)$
3．Vertical transport sensor［B］（E』川 x 1 ）

3．8．15 PAPER SIZE SWITCH

1．Paper cassette
2．Switch cover［C］（
3．Paper size switch［D］（ $⿷^{\mathbb{\#} \|} \times 1$ ）

3.9 IMAGE TRANSFER

3.9.1 IMAGE TRANSFER ROLLER

CAUTION: Do not touch the transfer roller surface with bare hands

1. Open the right door.
2. Lift the plastic holders $[A]$ with the image transfer roller [B].

NOTE: Leave the springs under the holders. When reassembling, make sure that the pegs [C] on the holders [D] engage with the springs.

B121R992.WMF

3.9.2 IMAGE DENSITY SENSOR

1. Open the right door.
2. Plastic cover [E]
3. Image transfer roller (-3.9 .1)
4. Push down on the notch $[F]$ to free the sensor.
5. Image density sensor [G] (気 $\mathbb{C l}$ x 1)

3.10 FUSING

3.10.1 FUSING UNIT

\triangle CAUTION

The fusing unit can become very hot. Be sure that it has cooled down sufficiently before handling it.

1. Turn off the main switch, and unplug the machine.
2. Front right cover (-3.3.7)
3. Open the right door.

B121R924.WMF

3.10.2 THERMISTOR

1. Fusing unit (-3.10.1)
2. Thermistors $[A]\left(\hat{\xi}^{3} \times 1, ~=\mathbb{E}=1\right)$

3.10.3 FUSING LAMPS

B121R926.WMF

1. Fusing unit (-3.10.1)
2. Separate the hot roller section $[A]$ from the pressure roller section $[B]$ ($(\hat{\xi} \times 4)$.
3. Front holding plate $[\mathrm{C}]\left(\begin{array}{l}\text { 隹 } \times 1)\end{array}\right.$
4. Rear holding plate [D] ($\mathcal{E}^{2} \times 1$)
5. Fusing lamp with the connector (600W) [E] (
6. Fusing lamp with the connector (550W) [F] (

When reassembling, check that the front ends of the two lamps fit in the front holding plate. They do not fit in there if you arrange the two lamps incorrectly.

3.10.4 HOT ROLLER STRIPPER PAWLS

1. Hot roller (-3.10 .5)
2. Roller guard $[A]\left(\mathcal{E}^{2} \times 3\right)$
3. Metal holders [B] (1 holder for each)
4. Hot roller stripper pawls [C] (1 spring for each)

3.10.5 HOT ROLLER

1. Hot roller stripper pawls (-3.10.4)
2. Hot roller [A] (2 C-rings, 1 gear, 2 bearings)

3.10.6 THERMOSTAT

1. Hot roller (-3.10.5)
2. Thermostat $[A]$ ($\times 2$ for each)

3.10.7 PRESSURE ROLLER AND BUSHINGS

1. Separate the hot roller section from the pressure roller section (3.10.3).
2. Fusing entrance guide $[A]\left({ }^{2} \times 2\right)$
3. 2 springs $[B]$
4. 2 pressure arms [C]
5. 2 Bushings [D]
6. Pressure roller [E]

3.10.8 NIP BAND WIDTH ADJUSTMENT

Execute this adjustment when the fusing unit is at its operating temperature. The size of the OHP sheet must be A4/LT LEF. Any other sizes may cause a paper jam.
[A]: Pressure roller
[B]: Hot roller

1. Place an OHP sheet on the by-pass feed table.
2. Enter SP mode, and run SP1-109.
3. Press the "Execute" key.
4. Press (). The machine feeds the OHP sheet into the fusing section, stops it there for 20 seconds, then ejects it to the copy tray.
5. Press the " 园" key.
6. Quit the SP mode.
7. Check that the nip band (the opaque stripe) across the ejected OHP sheet is symmetrical, with both ends slightly thicker than the center.
NOTE: There is no standard value for the nip band on this machine. Make the adjustment based on the band's appearance.
8. If the band is not as described above, change the position of the spring hooks
[C] (one on each side), and then check the band again.
NOTE: The higher hook position produces greater tension.

3.10.9 CLEANING ROLLER

1. Pressure roller and bushings (-3.10.7)
2. Cleaning roller $[A]$

B121R930.WMF

3.11 DUPLEX UNIT (DUPLEX MODELS ONLY)

3.11.1 DUPLEX EXIT SENSOR

1. Open the right door.
2. Sensor bracket $[A](\hat{\xi} \times 1)$

NOTE: Another bracket [B] comes off with the sensor bracket.
3. Duplex exit sensor [C] ($\mathbb{E} \mathbb{\|} \times 1$)

3.11.2 DUPLEX ENTRANCE SENSOR

1. Open the right door.
2. Lift the duplex guide [D].
3. Entrance sensor bracket $[E]$ and bracket cover [F] (雨 $\times 2$)
4. Duplex entrance sensor [G]

3.11.3 DUPLEX INVERTER SENSOR

B121R931.WMF

1. Copy tray $[\mathrm{A}](\hat{\xi} \times 2)$
2. Exit cover $[B](\hat{B} \times 1)$
3. Sensor bracket $[C]\left(\hat{\beta} \times 1\right.$, 気 $\|^{[1} \times 1$)
4. Duplex inverter sensor $[D]\left(\begin{array}{l}\text { 为 }\end{array}\right.$)

3．11．4 DUPLEX TRANSPORT MOTOR

1．Open the right door．
2．Detach the chain and spring from the frame，and lower the right door．
3．Cover $[A]\left(\mathcal{E}^{2} \times 1\right)$
4．Motor bracket $[B]\left(\hat{\xi} \times 4, \xi^{\mathbb{E}} \times 1\right)$ ．
5．Duplex transport motor［C］（

3．11．5 DUPLEX INVERTER MOTOR

1．Rear cover
2．Exhaust fan（－3．12．5）
3．Duplex inverter motor $[A]$ （象 $\times 2$ ，気 $\mathrm{El} \times 1$ ）

3．11．6 DUPLEX CONTROL BOARD

1．Rear lower cover（－3．3．2）
2．Duplex control board［A］ （令 $\times 4$ ，all connectors）

3.12 OTHER REPLACEMENTS

3.12.1 QUENCHING LAMP

1. $\mathrm{PCU}(-3.6 .1)$
2. Quenching lamp $[A]\left(⿷^{\|} \times 1\right)$

B121R502.WMF

3.12.2 HIGH-VOLTAGE POWER SUPPLY BOARD

4. Rear cover (-3.3.1)
5. High-voltage power supply board [B] (再 $\times 2,3$ standoffs, all connectors)

B121R932.WMF

3.12.3 BICU (BASE-ENGINE IMAGE CONTROL UNIT)

1. Rear cover (-3.3.1)
2. BICU [A] ($\mathcal{E}^{2} \times 7$, all connectors, 2 flat cables)

When replacing the BICU, remove the NVRAM [B] from the old BICU and install it on the new BICU. The NVRAM stores machine-specific data.

B121R933.WMF

3.12.4 MAIN MOTOR

1. Rear cover (-3.3.1)

3.12.5 REAR EXHAUST FAN (B123 ONLY)

1. Rear cover (3.3.1)
2. Rear exhaust fan $[A]\left(\mathcal{E}^{2} \times 2\right.$, 気 $\times 1$)

Reassembling

When reassembling, make sure that the arrow on the fan $[B]$ points the outside of the copier. The arrow indicates the direction of the air current.

3.12.6 LEFT EXHAUST FAN

1. Rear cover (-3.3 .1)
2. Left cover (-3.3 .5)
3. Fan cover $[A](\hat{\beta} \times 3)$

Reassembling

When reassembling, make sure that the arrow on the fan [C] points the outside of the copier. The arrow indicates the direction of the air current.
[C]

3.12.7 PSU (POWER SUPPLY UNIT)

1. Left cover (-3.3.5)
2. PSU [A] (all connectors, 角 x 6)

B121R943.WMF

3.12.8 GEARBOX

Replacement Procedure

1. Inverter tray [A]
2. Two screws $[B]$ from the middle rear cover

NOTE: This step releases the topmost part of the BICU bracket.
3. High-voltage power supply board (with the bracket) (3.8.8)
4. BICU (with the bracket) [C] (包 $\times 6$)

NOTE: If you have difficulty to remove the bracket, remove the screw at the middle of the crosspiece (see step 6).
5. Main motor (3.12 .4)

B121R937.WMF
6. Crosspiece $[\mathrm{D}]\left(\begin{array}{c}\text { 舟 } \times 3)\end{array}\right.$
7. Registration clutch (-3.8.8)

[B]

B121R938.WMF
8. $\mathrm{PCU}(-3.6 .1)$

NOTE: This step releases the gear (on the gearbox) that drives the PCU.
9. Ground plate $[\mathrm{A}]$ ($(\hat{\xi} \times 2)$
10. Gearbox [B] (

B121R940.WMF
When reassembling, do not change the position of the spring [C] and check that the bushing [D] on the PCU drive shaft is in the correct position. You can adjust its position by rotating the gear [E] seen from the opening of the gearbox.

Gear Arrangement in the Gearbox

The gears are numbered 1 to 12 in the order in which they are to be installed in the gearbox. These numbers appear both on the gearbox and on the front (exposed) surface of each gear. If the gears fall out, start by finding gear number 1 and installing it onto location number 1 (setting it into place so that the side with the printed number remains visible). Then install the remaining gears (2 to 12) in the same way.

3.13 COPY ADJUSTMENTS: PRINTING/SCANNING

NOTE: 1) You need to perform the adjustment after executing a Memory All Clear, and after replacing or adjusting any of the following parts.

- First or second scanner
- Lens Block
- Scanner Motor
- Polygonal Mirror Motor
- Paper Tray
- Paper Side Fence

2) For detailed explanations about how to access and use the SP modes, see Section 5.

3.13.1 PRINTING

NOTE: 1) Make sure the paper is installed correctly in each paper tray before you start these adjustments.
2) Use the Trimming Area Pattern (SP5-902, No.10) to print the test pattern for the printing adjustments below.
3) Set SP 5-902 to 0 again after completing these printing adjustments.

Registration - Leading Edge/Side-to-Side

1. Check the leading edge registration for each paper feed station, and adjust each of these registrations using SP1-001.
2. Check the side-to-side registration for each paper feed station, and adjust these registrations using SP1-002. (Adjust the trays in order: the 1st tray first, then the 2nd tray, etc.)

Tray	SP mode	Specification
Any paper tray	SP1-001-1	
By-pass feed	SP1-001-2	$2 \pm 1.5 \mathrm{~mm}$
Duplex	SP1-001-3	
1st tray	SP1-002-1	
2nd tray	SP1-002-2	
3rd tray (Optional PFU tray 1)	SP1-002-3	$2 \pm 1.5 \mathrm{~mm}$
4th tray (Optional PFU tray 2)	SP1-002-4	
By-pass feed	SP1-002-5	
Duplex	SP1-002-6	

A: Leading Edge Registration
B: Side-to-side Registration

Blank Margin

NOTE: If the leading edge or side-to-side registration cannot be adjusted to within the specification, then adjust the leading-edge blank margin or the left-side blank margin.

1. Check the trailing edge and right side edge blank margins, and adjust them using the following SP modes.

	SP mode	Specification
Trailing edge	SP2-101-2	$2+2.5 /-1.5 \mathrm{~mm}$
Right edge	SP2-101-4	$2+2.5 /-1.5 \mathrm{~mm}$
Leading edge	SP2-101-1	$2 \pm 1.5 \mathrm{~mm}$
Left edge	SP2-101-3	$2 \pm 1.5 \mathrm{~mm}$

A: Trailing Edge Blank Margin
B: Right Edge Blank Margin
C: Leading Edge Blank Margin
D: Left Edge Blank Margin

B121R506.WMF

Main Scan Magnification

1. Print the single-dot grid pattern (SP5-902-5).
2. Check the magnification (the grid size should be $2.7 \times 2.7 \mathrm{~mm}$), and if necessary use SP2-998 to adjust it. The specification is $100 \pm 1 \%$.

3.13.2 SCANNING

NOTE: 1) Before doing the following scanner adjustments, check and adjust the printing leading-edge and side-to-side registrations and the printing blank margins (as described above).
2) Use an A3 test chart to perform the following adjustments.

Registration: Platen Mode

1. Place the test chart on the exposure glass and make a copy from one of the feed stations.
2. Check the leading edge and side-to-side registration, and adjust as necessary using the following SP modes.

	SP mode	Specification
Leading edge	SP4-010	$2 \pm 1.5 \mathrm{~mm}$
Side-to-side	SP4-011	$2 \pm 1.5 \mathrm{~mm}$

A: Leading edge registration
B: Side-to-side registration

Magnification

B121R507.WMF

A: Main scan magnification
B: Sub-scan magnification

B121R508.WMF

Main Scan Magnification

1. Place the A3 test chart on the exposure glass and make a copy from one of the feed stations.
2. Check the magnification ratio. If necessary, adjust the magnification using the following SP mode.

	SP mode	Specification
Main Scan Magnification	SP4-009	$\pm 1.0 \%$

Sub-scan Magnification

1. Place the OS-A3 test chart on the exposure glass and make a copy from one of the feed stations.
2. Check the magnification ratio. If necessary, adjust the magnification using the following SP mode.

	SP mode	Specification
Sub-scan magnification	SP4-008	$\pm 1.0 \%$

Standard White Density Adjustment

This procedure adjusts the standard white density level. Carry out this adjustment after doing any of the following:

- After replacing the standard white plate.
- After replacing the NVRAM on the BICU. (But note that you do not need to carry out this adjustment if you have replaced the BICU itself but retained the previous NVRAM board [by moving it over onto the new BICU].)
- After performing a memory all clear (SP5-801-2 for Basic machine, SP5-998-1 for MFP machine's BICU engine).

Procedure:

1. Place 10 sheets of new A4/LTR paper (sideways, LEF) or new $A 3 / D L T$ paper on the exposure glass, and close the platen cover or the ADF.
2. Enter SP4-428-001 and select "1: YES". The machine automatically adjusts the standard white density.

3.13.3 ADF IMAGE ADJUSTMENT

Registration and Blank Margin

B121R509.WMF

NOTE: Make a temporary test chart as shown above, using A3/11" x 17" paper.

1. Place the temporary test chart on the ADF and make a copy from one of the feed stations.
2. Check the registrations, and adjust as necessary using the appropriate SP modes, as follows.

	SP mode
Side-to-side registration	SP6-006-1
Leading edge registration	SP6-006-2
Blank margin for the trailing edge	SP6-006-3
Side-to-side registration (Duplex: rear)	SP6-006-4

Sub-scan Magnification

A: Sub-scan magnification

NOTE: Make a temporary test chart as shown above, using $A 3 / 11^{\prime \prime} \times 17$ " paper.

1. Place the temporary test chart on the ADF and make a copy from one of the feed stations.
2. Check the registration, and if necessary adjust it using SP6-006-005. The specification is $\pm 1.0 \%$.

4. TROUBLESHOOTING

4.1 SERVICE CALL CONDITIONS

4.1.1 SUMMARY

There are four levels of service call conditions.

Level	Definition	Reset Procedure
A	To prevent damage to the machine, the main machine cannot be operated until the SC has been reset by a service representative (see the note below).	Enter SP mode, and then turn the main power switch off and on.
B	If the SC was caused by incorrect sensor detection, the SC can be reset by turning the main power switch off and on.	Turn the main power switch off and on.
C	The main machine can be operated as usual, excluding the unit related to the service call.	Turn the main power switch off and on.
D	The SC history is updated. The machine can be operated as usual.	The SC will not be displayed. Only the SC history is updated.

NOTE: 1) If the problem concerns electrical circuit boards, first disconnect then reconnect the connectors before replacing the PCBs.
2) If the problem concerns a motor lock, first check the mechanical load before replacing motors or sensors.

4.1.2 SC CODE DESCRIPTIONS

No. Definition	Symptom	Possible Cause
101	B	

No. Definition		Symptom	Possible Cause
145	D	Automatic SBU adjustment error	
		During the automatic SBU adjustment, the machine detects that the white level read from the white plate or paper is out of range. (\sim SP4-428)	- Exposure lamp defective - Dirty white plate - Incorrect position or width of white plate scanning (SP4-015) - BICU board defective - SBU board defective
193	B	Image transfer error	
		Scanned images are not transferred to the controller memory within 1 minute.	- BICU board defective - Controller board defective
198	B	Memory address error	
		The BICU board does not receive memory addresses from the controller board.	- The firmware programs of the engine and the controller do not match. - BICU board defective - Controller board defective
302	B	Charge roller current leak	
		A current leak signal for the charge roller is detected.	- Charge roller damaged - High voltage supply board defective - Poor connection of the PCU
320	B	Polygonal mirror motor error	
		The polygon mirror motor does not reach operating speed within 10 seconds after the motor ON signal is sent, or does not turn on within one of the 200 ms check intervals during operation.	- Polygon mirror motor defective - Poor connection between the polygonal mirror motor driver and the BICU board - Damaged cable between BICU and polygonal mirror motor driver - BICU board defective
321	C	No laser writing signal (F-GATE) error	
		The laser writing signal (F-GATE) fails to turn Low after the laser crosses 5 mm on the drum surface from the laser writing start position.	- BICU board defective - The fax controller or printer controller has a poor connection - Fax controller or printer controller defective
322	B	Laser synchronization error	
		The main scan synchronization detector board cannot detect the laser synchronization signal for more than 5 consecutive 100 ms intervals.	- Poor connection between the LD unit and the BICU board - Damaged cable between BICU and LD unit - LD unit out of position - LD unit defective - BICU board defective
390	B	TD sensor error	
		The TD sensor outputs less than 0.2 V or more than 4.0 V 10 times consecutively during copying.	- TD sensor abnormal - Poor connection of the PCU
391	B	Development bias leak	
		A development bias leak signal is detected.	- Poor connection of the PCU - High voltage supply board defective

No. Definition		Symptom	Possible Cause
392	B	TD sensor initial setting error	
		TD sensor initial setting is not performed correctly.	- ID sensor defective - No developer - Drum does not turn - Development roller does not turn - Poor connection of the PCU - The voltage is not applied to charge roller
401	B	Transfer roller leak error 1	
		A current leak signal for the transfer roller is detected. A current feedback signal for the transfer roller is not detected.	- High voltage supply board defective - Poor connection of the PCU - Transfer/separation unit set incorrectly - Transfer roller damaged
402	B	Transfer roller leak error 2	
		A current leak signal for the transfer roller is detected. A current feedback signal for the transfer roller is not detected.	- High voltage supply board defective - Poor connection of the PCU - Transfer/separation unit set incorrectly - Transfer roller damaged
500	B	Main motor lock	
		A main motor lock signal is not detected for more than 7 consecutive checks (700 ms) after the main motor starts to rotate, or the lock signal is not detected for more than 7 consecutive checks during rotation after the last signal.	- Too much load on the drive mechanism - Main motor defective
502	C	Tray 2 lift motor malfunction (Optional Paper Tray units)	
		The paper lift sensor fails to activate twice continuously after the tray lift motor has been on for 18 seconds.	- Paper lift sensor defective - Tray lift motor defective - Too much load on the drive mechanism - Poor tray lift motor connection
503	C	Tray 3 lift motor malfunction (optional paper tray units)	
		The paper lift sensor fails to activate twice continuously after the tray lift motor has been on for 18 seconds.	- Paper lift sensor defective - Tray lift motor defective - Too much load on the drive mechanism - Poor tray lift motor connection
504	C	Tray 4 lift motor malfunction (optional two-tray paper tray unit)	
		The paper lift sensor fails to activate twice continuously after the tray lift motor has been on for 18 seconds.	- Paper lift sensor defective - Tray lift motor defective - Too much load on the drive mechanism - Poor tray lift motor connection

No. Definition		Symptom	Possible Cause
506	C	Paper feed motor lock (optional paper tray units)	
		A motor lock signal is not detected for more than 1.5 s or the lock signal is not detected for more than 1.0 s during rotation.	- Paper feed motor defective - Too much load on the drive mechanism
541	A	Fusing thermistor open (center)	
		The fusing temperature detected by the thermistor is below $71^{\circ} \mathrm{C}$ and is not corrected after the main power switch is turned on.	- Fusing thermistor defective or out of position - Power supply board defective - Loose connectors
542	A	Fusing temperature warm-up error (center)	
		The fusing temperature rises less than 7 degrees in 2 seconds, and this continues 5 times consecutively. The fusing temperature is not detected in 25 or 35 seconds.	- Fusing thermistor defective or out of position - Fusing lamp open - Power supply board defective
543	A	Fusing overheat error (center)	
		The fusing temperature is over $230^{\circ} \mathrm{C}$ for 1 second (detected by the thermistor).	- Fusing thermistor defective - Power supply board defective
544	A	Fusing overheat error (center) 2	
		The fusing temperature is over $250^{\circ} \mathrm{C}$ for 1 second (detected by the fusing temperature monitor circuit).	- Fusing thermistor defective - Power supply board defective
545	A	Fusing lamp overheat error (center)	
		After the fusing temperature reaches the target temperature, the fusing lamp does not turn off for 12 consecutive seconds.	- Fusing thermistor defective or out of position - Power supply board defective
546	A	Unstable fusing temperature (center)	
		The fusing temperature varies $50^{\circ} \mathrm{C}$ or more within 1 second, and this occurs 2 consecutive times.	- Thermistor defective or out of position - Power supply unit defective
547	B	Zero cross signal malfunction	
		Zero cross signals are not detected within 5 seconds after the main power switch is turned on, or are not detected within 1 second after operation begins.	- Power supply board defective - BICU defective
551	A	Fusing thermistor open (rear)	
		The fusing temperature detected by the thermistor is below $71^{\circ} \mathrm{C}$ and is not corrected after the main power switch is turned on.	- Fusing thermistor defective or out of position - Power supply board defective - Loose connectors
552	A	Fusing temperature warm-up error (rear)	
		The fusing temperature rises less than 7 degrees in 2 seconds, and this continues 5 times consecutively. The fusing temperature is not detected in 25 or 35 seconds.	- Fusing thermistor defective or out of position - Fusing lamp open - Power supply board defective

No. Definition		Symptom	Possible Cause
553	A	Fusing overheat error (rear)	
		The fusing temperature is over $230^{\circ} \mathrm{C}$ for 1 second (detected by the thermistor).	- Fusing thermistor defective - Power supply board defective
555	A	Fusing lamp overheat error (rear)	
		After the fusing temperature reaches the target temperature, the fusing lamp does not turn off for 20 consecutive seconds.	- Fusing thermistor defective or out of position - Power supply board defective
556	A	Unstable fusing temperature (rear)	
		The fusing temperature varies $50^{\circ} \mathrm{C}$ or more within 1 second, and this occurs 2 consecutive times.	- Thermistor defective or out of position - Power supply unit defective
590	B	Left exhaust fan motor error	
		The CPU detects an exhaust fan lock signal for more than 5 seconds.	- Loose connection of the exhaust fan motor - Too much load on the motor drive
591	B	Rear exhaust fan motor error	
		The CPU detects an exhaust fan lock signal for more than 5 seconds.	- Loose connection of the exhaust fan motor - Too much load on the motor drive
620	B	Communication error between BICU and ADF	
		The BICU does not receive a response from the ADF main board for 4 seconds or more. The BICU receives a break signal from the ADF main board.	- Poor connection between the BICU and ADF main board (DF connector) - ADF main board defective - BICU defective
621	B	ADF connection error	
		An incorrect ADF (an ADF for some other copier) is detected. (for Basic and MFP machines) An ADF (including the correct ADF) is installed while the copier is in the energy saver mode. (for MFP machine only)	- ADF incorrect (The ADF for B039/B040/B043 is installed on a B121/B122/B123.) - The connector of the ADF is removed while the machine is in the energy saver mode.
632	C	Accounting error 1	
		An error is detected during the communication with the MF accounting device.	- Accounting device defective - Loose connection
633	C	Accounting error 2	
		After communication is established with the MF accounting device, a brake signal is issued.	- Accounting device defective - Loose connection
634	C	Accounting RAM error	
		An error is detected in the RAM that saves the information on the MF accounting.	- Accounting device defective
635	B	Accounting battery error	
		An error is detected in the battery that is in the MF accounting device.	- Accounting device defective

No. Definition		Symptom	Possible Cause
670	C	Engine start error	
		The engine-ready signal is not issued within 70 seconds after the switch is turned on.	- Engine board defective - Controller defective - Loose connection
760	B	ADF gate abnormal 1	
		The ADF Gate signal line between the ADF main board and the BICU is disconnected.	- ADF main board defective - Input/output board defective - Poor connection (ADF Gate line) between the ADF main board and the BICU.
761	B	ADF gate abnormal 2	
		The FGATE signal is not issued from the ADF within 30 seconds after the ADF starts feeding.	- ADF connector defective - SBU board defective
762	B	ADF gate abnormal 3	
		The FGATE signal is not terminated by the ADF within 60 seconds after the ADF starts feeding.	- ADF connector defective - SBU board defective
800	B	Startup without video output end error	
		Video transfer to the engine is started, but the engine did not issue a video transmission end command within the specified time.	- Controller board defective
804	B	Startup without video input end	
		A video transmission was requested from the scanner, but the scanner did not issue a video transmission end command within the specified time.	- Controller board defective
818	B	Watchdog error	
		The CPU does not access the watchdog register within a certain time.	- Controller board defective - Software malfunction - download controller firmware again
819	B	Kernel mismatch error	
		Software bug	- Download controller firmware again
820	B	Self-Diagnostic Error: CPU	
		The central processing unit returned an error during the self-diagnostic test.	- Controller board defective - Download controller firmware again
821	B	Self-Diagnostic Error: ASIC	
		The ASIC returned an error during the self-diagnostic test because the ASIC and CPU timer interrupts were compared and determined to be out of range.	- Controller board defective
823	C	Self-diagnostic Error: Network Interface	
		The network interface board returned an error during the self-diagnostic test.	- Network interface board defective - Controller board defective
824	B	Self-diagnostic Error: NVRAM	
		The resident non-volatile RAM returned an error during the self-diagnostic test.	- Replace the NVRAM on the controller board - Replace the controller board

No. Definition		Symptom	Possible Cause
826	B	Self-diagnostic Error: NVRAM/Optional NVRAM	
		The NVRAM or optional NVRAM returned an error during the selfdiagnostic test.	- Replace the NVRAM on the controller board
827	B	Self-diagnostic Error: RAM	
		The resident RAM returned a verify error during the self-diagnostic test.	- Download controller firmware again
828	B	Self-diagnostic Error: ROM	
		The resident read-only memory returned an error during the selfdiagnostic test.	- Controller board defective - Download controller firmware again
829	C	Self-diagnostic Error: Optional RAM	
		The optional RAM returned an error during the self-diagnostic test.	- Replace the optional memory board - Controller board defective
838	B	Self-diagnostic Error: Clock Generator	
		A verify error occurred when setting data was read from the clock generator via the I2C bus.	- Replace the controller board
850	C	via the I2C bus. Network I/F Abnormal	
		IEEE 1394 I/F Abnormal	
851	C		
		IEEE802.11b error - card not detected (power-on)	
853	C		
		Wireless LAN card not detected at power-on.	- Poor connection - Defective wireless LAN card - Defective controller
854	C		
		Wireless LAN card not detected during operation.	- Poor connection - Defective wireless LAN card - Defective controller
855	C	IEEE802.11b error	
		Wireless LAN card error detected.	- Poor connection - Defective wireless LAN card - Defective controller
856	C	IEEE802.11b interface board error	
		Wireless LAN interface board error detected	- Poor connection - Defective wireless LAN interface board
857	C	USB I/F Error	
		USB interface error detected.	- Defective controller
866	C	SD card authentication error	
		The SD card does not contain a correct license code.	- Data corruption
867	B	SD card access error 1	
		After the program saved in the SD card starts running, the SD card is removed from the slot.	- SD card removed

No. Definition		Symptom	Possible Cause
868	B	SD card access error 2	
		Incorrect data is detected in the SD card.	- SD card defective - SD controller defective
870	C	Address Book Data Error	
		Address book data stored on the hard disk was detected as abnormal when it was accessed from either the operation panel or the network.	- Software defective
871	C	FCU Flash ROM Error	
		The address book written into the flash ROM mounted on the FCU is detected as defective.	- Flash ROM device defective - Replace flash ROM on the MBU
900	B	as defective. Electrical total counter error	
		The electrical total counter does not work properly.	- NVRAM on the GW controller board defective
901	B	Mechanical total counter	
		The mechanical total counter does not work properly.	- Mechanical total counter defective - BICU defective - Disconnected mechanical total counter
903	B	Engine total counter error	
		not correct. Printer error	
920	C		
		A fatal error is detected in the printer application program	- Printer application program defective - Hardware configuration incorrect (including memory shortage)
921	C	Printer font error	
		Necessary font files are not found.	- Font file not installed
925	C	Net file error	
		fatal error. Memory error	
928	B		
		The machine detects a discrepancy in the write/read data during its write/read test (done at power off/on and at recovery from low power or night/off mode).	- Memory defective - BICU defective - Poor connection between BICU and memory
929	B	IMAC hardware error	
		A memory control job is not completed within a certain period.	- IMAC on the GW controller board defective - BICU defective - Poor connection
954	B	Printer application program error	
		The printer status does not become ready when the printer application program is necessary for image processing.	- Application program defective
955	B	Image transfer error	
		The controller is not able to transfer images when the engine needs them.	- Application program defective

No. Definition		Symptom	Possible Cause
964	B	Status error (laser optics housing unit)	
		The optics housing unit does not become ready within 17 seconds after the request.	- Software defective
981	B	NVRAM error	
		The machine detects a discrepancy in the NVRAM write/read data when attempting to save actual data to the NVRAM (i.e. during actual use).	- NVRAM defective - Poor connection between BICU and NVRAM - NVRAM is not connected - BICU defective
982	B	Localization error	
		The localization settings in the nonvolatile ROM and RAM are different (-SP5-807-1).	- First machine start after the NVRAM is replaced - Incorrect localization setting - NVRAM defective
984	B	Print image transfer error	
		Print images are not transferred.	- Controller defective - BICU board defective - Poor connection between controller and BICU
990	B	Software performance error	
		The software attempted to perform an unexpected operation.	- Software defective - Internal parameter incorrect - Insufficient working memory - When this SC occurs, the file name, address, and data will be stored in NVRAM. This information can be checked by using SP7-403. Note the above data and the situation in which this SC occurs. Then report the data and conditions to your technical control center.
	D	Software continuity error	
		The software attempted to perform an unexpected operation. However, unlike SC990, the object of the error is continuity of the software.	- No operation required. This SC code does not appear on the panel, and is only logged.
992	B	Unexpected Software Error	
		Software encountered an unexpected operation not defined under any SC code.	- Software defective - An error undetectable by any other SC code occurred
997	B	Application function selection error The application selected by a key press on operation panel does not start or ends abnormally.	- Download the firmware for the application that failed - An option required by the application (RAM, DIMM, board) is not installed

No. Definition		Symptom	Possible Cause
998	B	Application start error	- Download controller firmware - Replace the controller board - An option required by the application (RAM, DIMM, board) is not installed
		After power on, the application does not start within 60 s . (All applications neither start nor end normally.)	
999	B	Program download error	- Board installed incorrectly - BICU board defective - Controller board defective - IC card defective - NVRAM defective - Loss of power during downloading Important Notes About SC999 - Primarily intended for operating in the download mode, logging is not performed with SC999. - If the machine loses power while downloading, or if for some other reason the download does not end normally, this could damage the controller board or the PCB targeted for the download and prevent subsequent downloading. If this problem occurs, the damaged PCB must be replaced.
		The download (program, print data, language data) from the IC card does not execute normally.	

4.2 ELECTRICAL COMPONENT DEFECTS

4.2.1 SENSORS

Component	CN	Condition	Symptom
Registration	$\begin{aligned} & 111-2 \\ & \text { (BICU) } \end{aligned}$	Open	The Paper Jam message will appear whenever a copy is made (paper hasn't reached the sensor).
		Shorted	The Paper Jam message appears even if there is no paper at the sensor.
Relay	$\begin{aligned} & 111-5 \\ & \text { (BICU) } \end{aligned}$	Open	The Paper Jam message will appear whenever a copy is made except for 1st and by-pass tray feeding.
		Shorted	The Paper Jam message appears even if there is no paper at the sensor.
Upper Paper End	$\begin{aligned} & 114-2 \\ & (\mathrm{BICU}) \end{aligned}$	Open	The Paper End indicator lights when the 1st paper tray is selected, even if there is paper in the tray.
		Shorted	The Paper End indicator does not light when the 1st paper tray is selected, even if there is no paper in the tray. The Paper Jam message will appear whenever a copy is made from the 1st paper tray.
Vertical Transport	$\begin{aligned} & 110-2 \\ & (\mathrm{BICU}) \end{aligned}$	Open	The Paper Jam message will appear whenever a copy is made from an optional paper tray unit.
		Shorted	The Paper Jam message appears even if there is no paper at the sensor.
Lower Paper End	$\begin{aligned} & 113-6 \\ & \text { (BICU) } \end{aligned}$	Open	The Paper End indicator lights when the 2nd paper tray is selected, even if there is paper in the tray (B122/B123 models only).
		Shorted	The Paper End indicator does not light when the 2nd paper tray is selected, even if there is no paper in the tray. The Paper Jam message will appear whenever a copy is made from the 2nd paper tray (B122/B123 models only).
		Shorted	
By-pass Paper End	$\begin{aligned} & 136-7 \\ & \text { (BICU) } \end{aligned}$	Open	The Paper End indicator lights when the bypass tray is selected, even if there is paper in the tray.
		Shorted	The Paper End indicator does not light when the bypass tray is selected, even if there is no paper in the tray. The Paper Jam message will appear whenever a copy is made from the bypass tray.
Exit	$\begin{aligned} & 124-2 \\ & (\mathrm{BICU}) \end{aligned}$	Open	The Paper Jam message will appear whenever a copy is made (paper hasn't reached the sensor).
		Shorted	The Paper Jam message appears even if there is no paper at the sensor.
Toner Density	$\begin{aligned} & \hline 125-3 \\ & \text { (BICU) } \end{aligned}$	Open	SC390 is displayed.
		Shorted	
Image Density	$\begin{gathered} 123-2 \\ \text { (BICU) } \\ \hline \end{gathered}$	Open	The toner density control process is changed (see the note below the table).
		Shorted	

Component	CN	Condition	Symptom
Scanner H.P.	$\begin{aligned} & 102-2 \\ & \text { (BICU) } \end{aligned}$	Open	SC120 is displayed.
		Shorted	
Platen Cover	$\begin{gathered} 102-5 \\ (\mathrm{BICU}) \end{gathered}$	Open	APS and Auto Reduce/Enlarge do not function correctly.
		Shorted	If the Start button is pressed with the platen cover or $A(R) D F$ closed, "Cannot detect original size" is displayed.
Original Width	103-3,4 (BICU)	Open	The CPU cannot detect the original size properly. APS and Auto Reduce/Enlarge do not function correctly.
		Shorted	
Original Length	103-8,9 (BICU)	Open	The CPU cannot detect the original size properly. APS and Auto Reduce/Enlarge do not function correctly.
		Shorted	
Duplex Entrance	$\begin{aligned} & 222-2 \\ & \text { (DCB) } \end{aligned}$	Open	The Paper Jam message will appear whenever a duplex copy is made (paper hasn't reached the sensor).
		Shorted	The Paper Jam message appears even if there is no paper at the sensor.
Duplex Exit	$\begin{aligned} & 222-5 \\ & \text { (DCB) } \end{aligned}$	Open	The Paper Jam message will appear whenever a duplex copy is made (paper hasn't reached the sensor).
		Shorted	The Paper Jam message appears even if there is no paper at the sensor.
Duplex Inverter	$\begin{aligned} & 220-6 \\ & \text { (DCB) } \end{aligned}$	Open	The Paper Jam message will appear whenever a duplex copy is made (paper hasn't reached the sensor).
		Shorted	The Paper Jam message appears even if there is no paper at the sensor.

NOTE: SC392 is activated when the CPU detects an ID sensor error during developer initialization (SP2-214). However, SC392 is not displayed on the LCD but simply logged in the SC log (SMC printout), unless the technician exits SP Mode as soon as an error message is displayed.

4.2.2 SWITCHES

Component	CN	Condition	Symptom
Upper Paper Size	$\begin{gathered} 115- \\ 1,2,4 \\ \text { (BICU) } \end{gathered}$	Open	The CPU cannot detect the proper paper size, and misfeeds may occur when a copy is made from the 1st paper tray.
		Shorted	
Vertical Transport Door	$\begin{aligned} & 110-5 \\ & \text { (BICU) } \end{aligned}$	Open	The Cover Open indicator is lit even if the vertical transport door is closed.
		Shorted	The Cover Open indicator is not lit even if the vertical transport door is opened.
Lower PaperSize	$\begin{gathered} \hline 113- \\ 1,2,4 \\ \text { (BICU) } \\ \hline \end{gathered}$	Open	The CPU cannot detect the proper paper size, and misfeeds may occur when a copy is made from the 2nd paper tray.
		Shorted	
By-pass Paper Size	$\begin{gathered} 136- \\ 1,2,4,5 \\ \text { (BICU) } \end{gathered}$	Open	The CPU misdetects or is not able to detect the size of the paper set in the bypass tray, causing possible misfeeds when feeding from this tray.
Right Door	$\begin{aligned} & 124-5 \\ & \text { (BICU) } \end{aligned}$	Open	The Cover Open indicator is lit even if the right door is closed.
		Shorted	The Cover Open indicator is not lit even if the right door is open.
Front/Right Cover	$\begin{gathered} 130-1 \\ \text { (BICU) } \end{gathered}$	Open	The Cover Open indicator is lit even if doors are closed.
		Shorted	The Cover Open indicator is not lit even if doors are open.
Main	$\begin{gathered} 281-3,4 \\ \text { (PSU) } \\ \hline \end{gathered}$	Open	The machine does not turn on.
		Shorted	The machine does not turn off.

4.3 BLOWN FUSE CONDITIONS

Fuse	Rating		Symptom when turning on the main switch
	$\mathbf{1 2 0} \mathbf{~ V}$	$\mathbf{2 2 0} \mathbf{- 2 4 0} \mathbf{V}$	
Power Supply Board			
FU1	$15 \mathrm{~A} / 125 \mathrm{~V}$	-	No response.
FU2	$6.3 \mathrm{~A} / 250 \mathrm{~V}$	$3.15 \mathrm{~A} / 250 \mathrm{~V}$	No response.
FU3	$1 \mathrm{~A} / 125 \mathrm{~V}$	$1 \mathrm{~A} / 250 \mathrm{~V}$	Anti-condensation/Tray Heater does not turn on.
FU4	$4 \mathrm{~A} / 250 \mathrm{~V}$	$4 \mathrm{~A} / 250 \mathrm{~V}$	No response.
FU5	$4 \mathrm{~A} / 250 \mathrm{~V}$	$4 \mathrm{~A} / 250 \mathrm{~V}$	No response.
FU6	$4 \mathrm{~A} / 250 \mathrm{~V}$	$4 \mathrm{~A} / 250 \mathrm{~V}$	Sc901 is displayed.
FU7	$4 \mathrm{~A} / 250 \mathrm{~V}$	$4 \mathrm{~A} / 250 \mathrm{~V}$	Optional peripherals are detected but do not function.
FU8	$3.15 \mathrm{~A} / 250 \mathrm{~V}$	$3.15 \mathrm{~A} / 250 \mathrm{~V}$	No response.

4.4 LED DISPLAY

4.4.1 BICU

Number	Function
LED 1	Monitors the +5 V line for the CPU and the surrounding circuit. Usually, this LED is blinking.

5. SERVICE TABLES

5.1 SERVICE PROGRAM MODE

Abstract

©IMPORTANT Do not let the user access the SP mode. Only service representatives but no other persons are allowed to access the SP mode. The machine quality or its operation is NOT guaranteed after any person other than service representatives accesses the SP mode.

5.1.1 USING SP MODE

The following two modes are available:

- SP Mode (Service Program Mode): The SP Mode includes the programs that are necessary for standard maintenance work.
- SSP Mode (Special SP Mode): The SSP Mode includes SP-Mode programs and some special programs. You need some extra knowledge to manipulate these special programs. For details, consult your supervisor.

Starting SP Mode

1. Type the keys as follows: $\because \rightarrow(1) \rightarrow(0)(7)$
2. Press the (9) key and hold it down until the SP-mode menu is displayed (about 3 seconds).

Starting SSP Mode

For the basic machine (the machine without the optional controller box), perform as listed in steps 1 through 4. For the MFP machine (the machine with the optional controller box), perform as listed in steps 1 through 5.

1. Type the keys as follows: ${ }^{-} \rightarrow(1) \rightarrow(0) \rightarrow$
2. Press the ${ }^{\circ}$) key and hold it down until the SP-mode menu is displayed (about 3 seconds).
3. Press the $\#$ key and hold it down.
4. While holding down the $\#^{\#}$ key, press the (1) key (on the numeric keypad).
5. While holding down the $\#$ key, press the "OK" key.

Selecting Programs

- When a blinking underscore (or several blinking underscores) is displayed, you can type a number from the numeric keypad [D].
- When the sign " $>/ O K$ " $[A]$ is displayed upper right corner, you can scroll through the menu by pressing the left-arrow key [B] or the right-arrow key [C]. To select a program, press the OK key [F].

Specifying Values

1. After locating a program, press the OK key. A blinking underscore (or several blinking underscores) indicates which value you can change. The value in parentheses is the default value of the menu.
2. Type a necessary value from the numeric keypad. To switch between positive (plus) and negative (minus) values, press the \because key.
3. To validate the value, press the OK key. To cancel the value, press the cancel key [E].

Activating Copy Mode

You can activate the copy mode while the SP mode is running. When you do so, the copier outputs images or patterns that help you adjust the SP-mode program.

1. Press the () key. The copy mode is activated.
2. Specify copy settings and press the © key.
3. To return to the SP mode, press the

NOTE: You cannot end the SP mode while the copy mode is activated.

Quitting Programs/Ending (S)SP Mode

Press the mode by pressing one of these keys several times.

5.1.2 SP MODE TABLES-BASIC

The tables in this section (5.1.2) list the service programs (SPs) that are available when the optional controller box (B658) is NOT installed. For the SPs that are available with the optional controller box, see the next section (5.1.3).

The following keys are used:

- Asterisk (*): The settings are saved in the NVRAM. Most of them return to the default values when you execute SP5-801-002 (-5.1.7).
- DFU: The menu is for the design/factory use only. You must not change the settings.
- Brackets ([]): The brackets enclose the setting rage, default value, and minimum step (with unit) as follows: [Minimum ~ Maximum / Default / Step].
- SSP: The program is in the SSP Mode only. Consult your super visor before you use this program.

SP1-XXX (Feed)

	Leading Edge Registration		
	Adjusts the printing leading-edge registration from paper trays.		
10011	All Trays		
10012	By-pass		
10013	Duplex		

1002*	Side-to-Side Registration	
	Adjusts the printing side-to-side registration from each paper feed station, using the Trimming Area Pattern (SP5-902, No.10). Adjustments are supported for all 4 possible feed trays (including optional trays). - The SP1-002-1 setting is applied to all trays, not just the 1st tray. Settings for trays 2 to 4 are offsets relative to the SP1-002-1 setting. - For duplex copies, the value for the front side is determined by SP1-002-1 to -4, and the value for the rear side is determined by SP1-002-6.	
10021	1st tray	[-9.0 ~ 9.0 / $0.0 / 0.1 \mathrm{~mm} / \mathrm{step}]$ (3.13)
10022	2nd tray	
10023	3rd tray	
10024	4th tray	
10025	By-pass	
10026	Duplex	

}{}	Paper Feed Timing	
	Adjusts the amount of buckle the paper feed clutch applies to the paper after the registration sensor is activated. A higher setting applies greater buckling.	
	1st tray	$[0 \sim 10 / 5 / 1 \mathrm{~mm} / \mathrm{step}]$
10032	2nd tray (B122/B123 only)	$[0 \sim 10 / 5 / 1 \mathrm{~mm} / \mathrm{step}]$
10033	Optional tray	$[0 \sim 10 / 5 / 1 \mathrm{~mm} / \mathrm{step}]$
10034	By-pass feed	$[0 \sim 10 / 6 / 1 \mathrm{~mm} / \mathrm{step}]$
10035	Duplex	$[0 \sim 20 / 6 / 1 \mathrm{~mm} / \mathrm{step}]$

1007	Display By-pass	
10071	Display By-pass	Displays the by-pass paper width switch output.

1103*	Fusing Idling	
	This program decides the action of the Fusing Drive Release Mechanism 6.13.2). When you select "1," the contact/release control is disabled and the drive power is always transmitted to the fusing unit. As a result, the machine takes a longer time to warm up the fusing unit. Use SP1-103-001 if fusing quality is low even when the room temperature is not very low.	
11031	Fusing Idling	[$0=$ No/ 1 = Yes]

	Fusing Temperature Adjustment	
	Adjusts the target fusing temperature. "Center" indicates the center of the roller;	
"End" indicates the front and rear ends.		

1106	Display Fusing
11061	Displays the fusing temperature.

1107*	Fusing Soft Start	
	Adjusts the number of zero-cross cycles of the fusing lamp AC supply needed to bring the fusing lamp power to 100% while bringing the lamp up to the standby temperature or while copying. Increase this value if the machine is experiencing sudden power dropouts (6.13.5).	
11071	Warm Up Soft Start	[$0=10$ cycles / $1=20$ cycles / $2=50$ cycles]
11072	Other Soft Start	[$0=5$ cycles / $1=10$ cycles / $2=20$ cycles]

1108^{*}	Set-Fusing Start	$[0=1 \mathrm{~s} / 1=1.5 \mathrm{~s} / 2=2 \mathrm{~s}]$
11081	Specifies the interval for fusing-temperature control $(-6.13 .5)$.	

1109	Nip Band Check
11091	Checks the fusing nip band $(\sim 3.10 .8)$.

$111 \mathbf{1 0}^{*}$	Fan Control Timer
11101	$[30 \sim 60 / \mathbf{3 0} / 1 \mathrm{~s} /$ step] Inputs the fan control time. The fan maintains normal speed for the specified time after occurrence of an SC or following entry into Warm-up mode, Low Power mode, or Night/Off mode.

1902	Display-AC Freq.
19021	Displays the fusing lamp power control frequency (as detected by the zero cross signal generator). The displayed value is $1 / 5$ the actual frequency: $10=50 \mathrm{~Hz}, 12=$ 60 Hz.

1903*	Feed Clutch Boost	
	Adjusts the amount of extra push that the feed clutch gives to the paper after the skew has been corrected at registration. This feature helps the registration roller feed certain types of paper (such as thick paper). Increase the value if thick paper is jamming after feeding from the registration roller.	
19031	By-pass tray	[$0 \sim 10 / 6 / 1 \mathrm{~mm} /$ step]
19032	2nd, 3rd, 4th tray	[$0 \sim 10 / 3 / 1 \mathrm{~mm} / \mathrm{step}$]

$\mathbf{1 9 0 8}^{*}$	Optional Tray Adj.	
	Adjusts the reverse time for the upper and lower paper lift motors.	
19081	1st optional	$[-2 \sim+2 / 0 / 1 /$ step $]$
19082	2nd optional	- Detailed Descriptions - Optional Paper Tray Unit

1911*	By-pass Envelope
19111	[0 = Disabled / 1 = Enabled
	The program dedicated to envelope printing runs when you enable this program (SP1-911-001) and you select "Thick Paper" as the paper type of the by-pass tray ((ब)圆 > System Settings > Tray Paper Settings > Paper Type: Bypass Tray).

SP2-XXX (Drum)

2001*	Charge Roller Bias Adjustment
20011	Printing $\quad[-2100 \sim-1500 / \mathbf{1 7 0 0} / 1 \mathrm{~V} /$ step $]$
	Adjusts the voltage applied to the charge roller when printing. The actually applied voltage changes automatically as charge roller voltage correction is carried out. The value you set here becomes the base value on which this correction is carried out.
20012	ID sensor pattern $\quad[0 \sim 400 / \mathbf{3 0 0} / 1 \mathrm{~V} /$ step $]$
	Adjusts the voltage applied to the charge roller when generating the Vsdp ID sensor pattern (as part of charge roller voltage correction). The actual charge-roller voltage is obtained by adding this value to the value of SP2-001-1.

2201*	Development Bias Adjustment	
22011	Printing	[-1500~-200/-650 / $1 \mathrm{~V} /$ step]
	Adjusts the voltage applied to the development roller when printing. This can be adjusted as a temporary measure if faint copies are being produced due to an aging drum.	
22012	ID sensor pattern	$\begin{aligned} & {[-2=\mathrm{LL}(220 \mathrm{~V}) /-1=\mathrm{L}(260 \mathrm{~V}) / 0=\mathrm{N}(300 \mathrm{~V}) / 1=} \\ & \mathrm{H}(340 \mathrm{~V}) / 2=\mathrm{HH}(380 \mathrm{~V})] \end{aligned}$
	Adjusts the voltage applied to the development roller when generating the ID sensor pattern. The actual voltage applied is this setting plus the value of SP2-2011. The setting affects ID sensor pattern density, which in turn affects the toner supply.	

$\mathbf{2 2 1 3 ^ { * }}$	Outputs after Near End
22131	$[0=50$ pages $/ 1=20$ pages $]$ Sets the number of copy/print/fax pages that can be made after toner near-end has been detected. Reduce the number of pages if the user normally makes copies with a high image ratio.

$\mathbf{2 2 1 4}$	Developer Initialization
22141	Initializes both the TD sensor toner supply target voltage and the TD sensor gain value. Carry this out after replacing the developer or the TD sensor.

$\mathbf{2 2 2 0}$	TD Sensor Output Value Display
22201	Displays: a) Vt: the current TD sensor output value and b) Vref: the target TD output value Vts (SP2-926) + correction for ID sensor output. The TD sensor output value changes every copy. If $a>b$, toner is supplied to the development unit.

2221	ID Sensor Error Analysis (5.1.5)	
22211	Vsg	Displays the Vsg value.
22212	Vsp	Displays the Vsp value.
22213	PWM	Displays the PWM value.
22214	Vsdp	Displays the Vsdp value.
22215	Vt	Displays the Vt value.
22216	Vts	Displays the Vts value.

2301*	Transfer Current Adjustment	
23011	Normal paper	$\begin{aligned} & {[-2=-4 \mathrm{~mA} /-1=-2 \mathrm{~mA} / 0=0 \mathrm{~mA} / 1=2 \mathrm{~mA} / 2} \\ & =+4 \mathrm{~mA}] \end{aligned}$
	Adjusts the current applied to the transfer roller when feeding from a paper tray. Use a high setting if the user normally feeds relatively thick paper (within spec) from a paper tray (6.12.2).	
23012	Thick/Special paper	$\begin{aligned} & {[-2=-4 \mathrm{~mA} /-1=-2 \mathrm{~mA} / 0=0 \mathrm{~mA} / 1=2 \mathrm{~mA} / 2} \\ & =+4 \mathrm{~mA}] \end{aligned}$
	Adjusts the current applied to the transfer roller when feeding from the by-pass tray. Use a high setting (a) if the user normally feeds relatively thick paper from the bypass tray, or (b) if waste toner is re-attracted from the drum (which can occur when using transparencies). 6.12.2	
23013	Duplex	$\begin{aligned} & {[-2=-4 \mathrm{~mA} /-1=-2 \mathrm{~mA} / 0=0 \mathrm{~mA} / 1=2 \mathrm{~mA} / 2} \\ & =+4 \mathrm{~mA}] \end{aligned}$
	Adjusts the current applied to the transfer roller when carrying out a duplex job. Use this SP if there is poor image transfer on the rear side of duplex copies (6.12.2).	
23014	Cleaning	[-10 ~ 0 / -1 / $1 \mathrm{~mA} / \mathrm{step}$]
	Adjusts the current applied to the transfer roller for roller cleaning. Increase the current if toner remains on the roller after cleaning. (Remaining toner may cause dirty background on the rear side.) (6.12.2)	

$\mathbf{2 8 0 2}$	Forced Developer Churning
28021	Initializes the developer and checks the TD sensor output (Vt). The machine mixes the developer for 2 minutes while reading and displaying the Vt value. The machine does not initialize the TD sensor output. If the machine has not been used for a long period of time, prints may have a dirty background. In this case, use this SP mode to mix the developer. The message "Completed" is displayed when the program ends normally.

2908	Forced Toner Supply
29081	Forces the toner bottle to supply toner to the toner supply unit. Press "1" to start. The machine continues to supply toner until the toner concentration in the development unit reaches the standard level, or for up to 2 minutes (whichever comes first).

2915*	Polygon Mirror Motor Idling Time
29151	$[0=$ None / 1 = 15 s / 2 = 25 s] Selects the polygon mirror motor idling time. To increase the speed of the first copy, the mirror motor begins idling when the user sets an original, touches a key, or opens the platen cover or DF. If this setting is left at the default (15 s), the motor will stop if the user does nothing for 15s. If the setting is "0", the motor will not switch off during standby. (But note that regardless of the setting, the motor will switch off when the machine enters energy saver mode.)

2921*	Toner Supply Mode
29211	$[\mathbf{0}=$ Sensor $1 / 1$ = Sensor 2 (DFU) / 2 = Fixed 1 (DFU) / 3 = Fixed 2]
Selects the toner supply mode. Under normal conditions this should be set to "0".	
	You can temporarily change this to " 3 " if the TD sensor is defective. Do not set to "1" or "2", as these are for design use only (6.9 .6$).$

$\mathbf{2 9 2 2 *}^{29221}$	Toner Supply Time
$[0.1 \sim 5.0 / 0.4 / 0.1$ s/step]	
	Adjusts the toner supply motor ON time for Sensor 1 and Sensor 2 toner supply mode. Accordingly, this setting is effective only if SP2-921 is set to "0" or "1" Raising this value increases the toner supply motor ON time. Set to a high value if the user tends to make many copies having high proportions of solid black image areas (6.9.6).

$\mathbf{2 9 2 3}^{*}$	Toner Recovery Time
29231	$[3 \sim 60 / \mathbf{3 0} / 1$ s/step]
	Adjusts the toner supply motor ON time used during toner recovery from Toner Near End or Toner End. This setting is effective only if SP2-921 is set to "0" Since toner recovery is carried out in 3-second cycles, the input value should be a multiple of 3 (3, 6, 9...). 6.9.6

2925*	Toner Supply Rate
29251	Adjusts the toner supply time for fixed toner supply mode. This setting is effective only if SP2-921 is set to " 2 " or " 3 ". [0 ~ $7 / 0] \mathrm{t}=200 \mathrm{~ms}$, and settings are as follows $\begin{array}{ll} 0=t & 4=12 t \\ 1=2 t & 5=16 t \\ 2=4 t & 6=0 n \text { continuously } \\ 3=8 t & 7=0 \mathrm{~s} \end{array}$ Raising this value increases the toner supply motor ON time. Set to a high value if the user tends to make many copies having high proportions of solid black image areas (-6.9.6).

2926^{*}	Standard Vt
29261	$[0.00 \sim 5.00 / 2.50 / 0.01$ V/step] DFU Adjusts Vts (the Vt value for new developer). The TD sensor output is adjusted to this value during the TD sensor initial setting process]. This SP is effective only when SP2-921 is "0", "1", or "2".

2927^{*}	ID Sensor Control
29271	$[0=$ No $/ 1=$ Yes $]$ Selects whether the ID sensor is or is not used for toner density control. This value should normally be left at " 1 ". If the value is " 0 ", dirty background may occur after long periods of non-use.

2928	Toner End Clear
2928 1	Clears the toner end condition without adding new toner. The following are cleared: - Toner end indicator (goes out).

${ }^{*}$	Vref Limits	
	Adjust the upper or lower Vref limit.	
29291	Upper	$[0.50 \sim 3.50 / \mathbf{3 . 2 0} / 0.01 \mathrm{~V} /$ step $]$ DFU
29292	Lower	$[0.50 \sim 3.50 / \mathbf{0 . 7 0} / 0.01 \mathrm{~V} /$ step $]$ DFU

2994^{*}	ID Sensor Detection Temperature	$\left[30 \sim 90 / \mathbf{3 0} / 1^{\circ} \mathrm{C} /\right.$ step $]$
29941	While the machine is recovering from an energy saver mode, or while the machine starts, the controller ignores the ID-sensor signals if the fusing temperature is at the specified value or higher.	

2996^{*}	Transfer Roller Cleaning
29961	Selects whether the transfer roller is cleaned before each copy job. Set this to "1" if dirty background is appearing on the reverse side of the first page of copy jobs. Note that this will increase the time required to generate the first copy. If the setting is "0", the transfer roller is never cleaned (-6.12.3).

$\mathbf{2 9 9 8}$	Main Scan Magnification	$[-0.5 \sim+0.5 / \mathbf{0 . 0} / 0.1 \% /$ step $]$
29981	Adjusts the magnification along the main scan direction, for all print modes (copy, fax, printing). The specification is $100 \pm 1.0 \%(-3.13 .1)$.	

SP4-XXX (Scanner)

4008*	Sub-Scan Magnification (Scanner)	$[-0.9 \sim+0.9 / 0.0 / 0.1 \% /$ step $]$
40081	Adjusts the actual sub-scan direction scanning magnification. The higher the setting, the lower the scanner motor speed (

4009*	Main Scan Magnification (Scanner)	$[-0.9 \sim+0.9 / 0.0 / 0.1 \% /$ step $]$
40091	Adjusts the magnification along the main scan direction, for scanning (- The specification is $100 \pm 1.0 \%$ - Main scan magnification is implemented in steps of 0.5 . Accordingly, your input value should be a multiple of $0.5(-1.0,-0.5,0,+0.5$, or +1.0$)$	

4010^{*}	Leading Edge Registration (Scanner)	$[-5.0 \sim+5.0 / 0.0 / 0.1 \mathrm{~mm} /$ step $]$
40101	Adjusts the leading edge registration for scanning in platen mode ($-3.13 .2)$. $\bullet(-):$ The image moves toward the leading edge. $\bullet(+):$ The image moves toward the trailing edge. The specification is $2 \pm 1.5 \mathrm{~mm}$.	

4011* 4	Side-to-side Registration (Scanner)	$[-4.2 \sim+4.2 / 0.0 / 0.1 \mathrm{~mm} /$ step $]$
40111	Adjusts the side-to-side registration for scanning in platen mode ($-3.13 .2)$. \bullet • Increasing the value shifts the image to the right	

4012*	Scan Erase Margin	
	Adjusts the scanning margin individually for each of the four edges. It is generally best to adjust the scanning margin as little as possible, and use the printing margin for image adjustments.	
40121	Leading edge	[0~9.0 / 1.0 / 0.1 mm/step]
40122	Trailing edge	
40123	Left	
40124	Right	

4013	Scanner Free Run
40131	Performs a scanner free run with the exposure lamp on. Press ON or to start. Press OFF to stop.

4015*	White Plate Scanning
40151	Start position $\quad[-3.0 \sim+6.0 / 0.0 / 0.1 \mathrm{~mm} /$ step $]$
	Adjusts the scanning start position on the white plate for auto shading. The base value stored in the machine is 15.2 mm toward the white plate from the scanner H.P. This SP setting specifies the offset from this base value.
40152	Scanning length $\quad[-3.0 \sim+6.0 / \mathbf{0 . 0} / 0.1 \mathrm{~mm} /$ step $]$
	Adjusts the length of the white plate scan, in the main scan direction. The scan begins at the start position set above [in SP4-015-1] and extends for the specified length. The base value stored in the machine is 4.76 mm . This SP setting specifies the offset from this base value.

4301	Display-APS Data
43011	Displays the status of the APS sensors and platen/DF cover sensor (5.1.17).

4303* *	APS Small Size Original	$[0=$ No (not detected)/1 = Yes (A5/HLT LEF)]
43031	Selects whether or not the copier will consider the original to be A5/HLT LEF when the APS sensors cannot detect its size. If "Yes" is selected, paper sizes that cannot be detected by the APS sensors are regarded as A5/HLT LEF. If "No" is selected, "Cannot detect original size" will be displayed.	

4305^{*}	APS Priority	$[0=$ Normal / 1 = A4/LT / $2=8 \mathrm{~K} / 16 \mathrm{~K}]$
43051	1. A4/LT • North America model: When the ASP detects the LT size, the controller interprets it as the A4 size. • Other models: When the ASP detects the A4 size, the controller interprets it as the LT size. 2. 8K/16K (for the China model only) • When the ASP detects the A3/B4 SEF, the controller interprets it as the 8K SEF. • When the ASP detects the B5/A4 SEF, the controller interprets it as the 16K SEF. • When the ASP detects the B5/A4 LEF, the controller interprets it as the 16K LEF. The Europe model interprets undetected original sizes as A5 LEF under the following conditions: i. SP4-303-001 is "Yes," and ii. SP4-305-001 is "Normal" The Europe model interprets undetected original sizes as LT SEF under the following conditions: i. SP4-303-001 is "Yes," and ii. SP4-305-001 is "A4/LT"	

4428	Scan Auto-Adjustment
44281	Performs the automatic scanner adjustment. Use this SP mode after replacing the white plate.

4901	SBU White Level Adjustment
49011	Black Display-Error $\quad[0=$ Normal / 1 = Error $]$
	Displays the return code of the black-level adjustment. When an error is detected, SC143 or SC145 is generated.
49012	Black Feedback-EVEN [0 ~ 8191]
	Displays the feedback value of the even channels given by the SBU. Normally, the value is $1,2,3, \ldots, 8188,8189$, or 8190 . However, machine may operate normally even when the value is 0 or 8191 .
49013	Black Feedback-ODD [0~8191]
	Displays the feedback value of the odd channels given by the SBU. Normally, the value is $1,2,3, \ldots, 8188,8189$, or 8190 . However, machine may operate normally even when the value is 0 or 8191 .
49014	Black Display-Target $[0 \sim 63 / 10 /$ step $]$
	Displays the target value for the black-level adjustment executed during machine initialization. Normally, the value is 10 . Other values indicate that the adjustment has ended unsuccessfully.
4901 5*	White Target $\quad[0 \sim 511 / 511 / 1 /$ step $]$
	Displays the target value for the white-level adjustment.
49016	White Result $\quad[0 \sim 511 / 0 / 1 /$ step $]$
	Displays the result of the white-level adjustment.
49018	White Display-Error $\quad[0=$ Normal $/ 1=$ Error $]$
	Displays the return code of the white-level adjustment. When an error is detected, SC143 is generated.
49019	White Display-Overflow $\quad[0=$ Normal / $1=$ Error]
	Displays a return code of the white-level adjustment. The code "1" (error) is returned if the adjustment result is not in the range of the values in SP4-901-6.

490110	White Number of Attempt	
	Displays how many times the white-level adjustment is retried. The value does not include the first execution of the white adjustment. For example, if the value is " 2 ", this indicates that the white-level adjustment has been executed three times. The white-level adjustment can be executed 20 times or less. Therefore, if the value is " 20 ," this indicates that the white-level adjustment has ended abnormally (as described, the value " 20 " does not include the first execution). If the white-level adjustment is unsuccessful, the machine uses the result of the latest, successful white-level adjustment.	
4901 11*	Auto Adjustment Setting	[222 ~ 281 / 256 / 1/step]
	Displays the parameter of the white-level adjustment. The value is based on the result of SP4-901-12.	
490112	Auto Adjustment-Result	[$0 \sim 600 / 0$ / 1/step]
	Displays the result of the white-level adjustment. Normally, the value is between 228 and 281 (including the both values). When the value is normal, it is stored as the value of SP4-901-11.	
490114	Auto Adjustment-Error	[0 = Normal / 1 - Error]
	Displays a return code of the white-level adjustment. The code "1" (error) is returned if the adjustment result value is less than 228 or larger than 281 (SP4-901-12).	

4902^{*}	Exposure Lamp ON
49021	Turns the exposure lamp on or off. To turn off the exposure lamp, select "OFF". (The exposure lamp shuts off automatically after 180 seconds.)

4903^{*}	ADS Level	$[0 \sim 255 / 252 / 1 /$ step $]$
49031	Adjusts the ADS level.	

4904^{*}	ADS Lower Limit	$[0 \sim 255 / 80 / 1 /$ step $]$
49041	Adjusts the ADS lower limit.	

4905^{*}	ADS Level	$[0=$ All $/ 1=$ One $]$
49051	Checks the whole area $(0=$ All $)$ or the area between 15 mm and 90 mm from the left edge $(1=$ One $)$ to adjust the ADS level.	

4921*	Image Adj Selection (6.5.4)	
49211	Image Adj Selection (Copy)	[$0 \sim 10 / 0 / 1]$
	$\begin{array}{ll} \hline \text { Selects which mode the settings } \\ 0=\text { None } & 1=\text { Text } 1 \\ 4=\text { Photo } 2 & 5=\text { Photo } 3 \\ 8=\text { Special } 3 & 9=\text { Special } 4 \end{array}$	$\begin{array}{ll} \text { from SP4-922 to SP4-932 are used for. } \\ 2=\text { Text } 2 & 3=\text { Photo } 1 \\ 6=\text { Special } 1 & 7=\text { Special } 2 \\ 10=\text { Special } 5 \end{array}$

4922* *	Scanner Gamma
	Selects "text" or "photo" as the priority output mode. This setting is applied to all image processing modes of SP4-921.* 6.5.4 IPU
49221	Scanner Gamma (Copy) $\quad[\mathbf{0 = \text { System default/1=Text/2=Photo] }}$

4923* *	Notch Selection (6.5.4)
	Selects the value of the center ID adjustment notch for the ID adjustment LEDs. - Normally the center notch is 3 (range 1-5). If -1 is selected, each notch shifts down (becomes lighter). If +1 is selected, each notch shifts up (becomes darker). - This setting is applied to all image processing modes of SP4-921.
49231	Notch Selection (Copy) $\quad[-1=$ Light / $\mathbf{0}=$ Normal / +1 = Dark]

$\mathbf{4 9 2 6}^{*}$	Texture Removal (6.5.4)
	Adjusts the texture removal level that is used with error diffusion. 0: The default value for each mode is used. Text 1, Photo 2, Special 2, and Special 5 have a default of 3 and Photo 1, 3 have a default of 1. 1: No removal applied. 2-5: Removal applied at the level specified here. The higher the setting (level), the less clear the image will become (more texture removal). This setting is only applied to the originals in SP4-921.
4926 1	Texture Removal (Copy)

$\mathbf{4 9 2 7}^{*}$	Line Width Correction	
	Adjusts the line width correction algorithm. Positive settings produce thicker lines; negative settings produce thinner lines. This setting is only applied to the originals in SP4-921 ($-6.5 .4)$.	
49271	Line Width Correction (Copy)	

$\mathbf{4 9 2 8}^{*}$	Independent Dot Erase
	Selects the dot erase level. Higher settings provide greater erasure. This setting is only applied to the originals in SP4-921 (6.5.4).
49281	Independent Dot Erase (Copy)

4929^{*}	Positive/Negative	$[0=$ No, $1=$ Yes $]$
	Inverts white and black. This setting is only applied to the originals in SP4-921 (
6.5 .4$).$		
49291	Positive/Negative (Copy)	

4930^{*}	Sharpness-Edge	$[-2 \sim 2 / 0 / 1 /$ step $]$
	Adjust the clarity. This setting is only applied to the originals in SP4-921 (6.5.4).	
49301	Sharpness-Edge (Copy)	

4931* *	Sharpness-Solid	$[-2 \sim 2 / 0 / 1 /$ step $]$
	Adjust the clarity. This setting is only applied to the originals in SP4-921 (6.5.4).	
49311	Sharpness-Solid (Copy)	

4932^{*}	Sharpness-Low ID	$[-2 \sim 2 / 0 / 1 /$ step $]$
	Adjust the clarity. This setting is only applied to the originals in SP4-921 (6.5.4).	
49321	Sharpness- Low ID (Copy)	

4941* *	White Line Erase	$[0 \sim 2 / 1 / 1 /$ step $]$
49411	Selects the white line erase level ($-6.5 .4)$.	
	0: None 1: Weak 2: Strong	
	•This setting is effective only Photo 1, Photo 3, Special 3 or Special 4 mode.	
	• 0: White line erase is not used, and white level correction is used instead-	

$4^{4942^{*}}$	Black Line Erase	$[0 \sim 3 / 2 / 1 /$ step $]$
49421	Selects the black line erase level. This setting is effective only when originals are scanned by the A(R)DF $(\sim 6.5 .4)$. $[0=N o / 1=$ Very weak $/ 2=$ Weak / $3=$ Strong $]$ This setting is applied regardless of what mode has been selected in SP4-921.	

SP5-XXX (Mode)

$\mathbf{5 0 0 1}$	All Indicators On
50011	All LEDs turn on. The LCD turns on or off every 3 seconds. Press the reset key to end this program.

5104^{*}	A3/DLT Double Count	$[0=$ Enabled / 1 = Disabled / $2=$ Disabled if the size is undetected $]$
51041	Selects whether the machine counts twice for each sheet of A3/11" $\times 17$ ". If this is set to "Yes" is selected, the total (mechanical) counter and the current user counter will both increment by two for each A3/11" $\times 17$ " sheet.	

$\mathbf{5 1 1 3}^{*}$	Optional Counter Type	0: None 11: MF key card (Increment) 12: MF key card (Decrement)
51131	Selects the corresponding key for installed devices such as coin lock.	

$512 \mathbf{0}^{*}$	Clr-OP Count Remv	$[0=$ Yes / 1=Standby only / 2=No]
51201	Determines under which conditions the copy job settings are reset when the key counter is removed. With 0, the settings are cleared if the counter is removed at the end of a job or midway through a job. With 1, they are only cleared if the counter is removed at the end of a job. With 2, they are not cleared at all, under either condition. With duplex copies, the job settings are always preserved, regardless of the setting of this SP mode.	

$\mathbf{5 1 2 1}^{*}$	Count Up Timing	$[0=$ Feed In / $1=$ Exit $]$
51211	Selects whether the key counter increments at time of paper feed-in or at time of paper exit.	

5127^{*}	APS Mode	$[0=$ Enabled $/ 1=$ Disabled $]$
51271	Enables or disables the APS mode..	

5501^{*}	PM Alarm Interval (Printout)	$[0 \sim 9999 / 0 / 0 \mathrm{~K}$ copies/step]
55011	Specifies when the PM alarm occurs.	

5801	Memory Clear
58012	Engine 5.1 .7

5802	Machine Free Run
58021	Starts a free run of both the scanner and the printer. Press "ON" to start; press "OFF" to stop.

5803	Input Check
	-5.1 .8

	Output Check
	-5.1 .9

5807^{*}	Area Selection				
58071	Selects the display language group.				
	1	Japan	2	North America	3
	Europe	4	Taiwan		
	5	Asia	6	China	7
	Korea				
	SP5-807-1 is not cleared by SP5-801-2				

5811*	Serial Num Input
58111	5.1 .10

5812*	Service TEL
58121	Service TEL (Telephone)
	Use this to input the telephone number of the service representative. (The number is displayed when a service call condition occurs.) To input a dash, press \because. To delete the current telephone number, press (0 .
58122	Service TEL (Facsimile)
	Use this to input the fax number printed on user counter reports. To input a dash, press To delete the current fax number, press (${ }^{(0)}$.

5824	NVRAM Upload
58241	5.1 .11

5825	NVRAM Download
	1

5901	Printer Free Run
59011	Executes the free run. Press "ON" to start; press "OFF" to stop.

5902	Test Pattern Print
59021	-5.1 .13

5907*	Plug \& Play Setting
59071	Selects the brand name and production name for the Plug and Play function. These names are registered in the NVRAM. If the NVRAM becomes defective, these names should be re-registered. Use the right-arrow or left-arrow key to scroll through the list of brand names. To select a brand name, press the OK key. An asterisk (*) indicates which manufacture is currently selected. (5.1.7

$591 \mathbf{8}^{*}$	A3/DLT Counter Display	$[\mathbf{0}=$ Off $/ 1=$ On $]$
59181	Sets the key press display for the counter key. This setting has no relation to (SSP) SP5-104 A3/DLT Double Count.	

5990	SMC Print	
59901	All	-5.1.15
59902	SP	
59903	User Program	
59904	Logging Data	
59905	Big font	

SP6-XXX (Peripherals)

6006*	ADF Adjustment (3.13.3) NOTE: Available menus depend on the machine model and its configuration.	
60061	ADF Adjustment (StoS/Front Regist)	[-5.0 ~ +5.0 / 0.0 / 0.1 mm/step]
	Adjusts the side-to-side registration for the front side of the original, for ADF mode. Use the \circledast key to select " + " or " - " before entering the value	
60062	ADF Adjustment (Leading Regist)	[-5.0 ~ +5.0 / 0.0 / 0.1 mm/step]
	Adjusts the leading edge registration for ADF mode. Use the \mho^{\circledast} key to select "+" or "-" before entering the value.	
60063	ADF Adjustment (Trailing Erase)	[-3.0 ~ +3.0 / -1.0 / $0.1 \mathrm{~mm} / \mathrm{step}]$
	Adjusts the trailing edge erase margin for ADF mode. Use the \circledast key to select " + " or "-" before entering the value.	
60064	ADF Adjustment (StoS/Rear Regist)	[-5.0 ~ +5.0 / 0.0 / $0.5 \mathrm{~mm} /$ step]
	Adjusts the side-to-side registration for the rear side of duplex originals, for ADF mode. Use the \because key to select " + " or " - " before entering the value.	
60065	ADF Adjustment (Sub-scan Magnif)	[-0.9 ~ +0.9 / 0.0 / 0.1 \%/step]
	Adjust the sub-scan magnification for the ADF.	
60066	ADF Adjustment (Original Curl Adj)	[0 = No / 1 = Yes]
	Enables or disables the skew adjustment for the reverse sides of originals. When you enable SP6-006-6, adjust the distance of the skew adjustment (SP6-006-7).	
60067	ADF Adjustment (Skew Correction)	[-20 ~ +20 / 0 / 1 mm/step]
	Specifies the distance of the skew adjustment. SP6-006-7 is effective when you enable SP6-006-6 (ADF Adjustment [Original Curl Adj]).	

6009	ADF Free Run
60091	Performs an ADF free run. Press "ON" to start; press "OFF" to stop.

6901	Display ADF-APS
69011	Displays the status of the ADF original size sensors (-5.1.17).

6910^{*}	ADF Shading Time	$[0 \sim 60 / \mathbf{1 0} / 1$ s/step]
69101	Adjusts the interval used for the shading processing in the ADF mode. Light and heat in the room may affect the scanner response. Reduce this setting if copy quality indicates that the white level is drifting during ADF copy jobs.	

SP7-XXX (Data Log)

7001^{*}	Total Operation
$\mathbf{7 0 0 1 1}$	Displays the total operation time (total drum rotation time).

7401^{*}	Counter-SC Total	$[0 \sim 9999 / 0 / 1 /$ step $]$
74011	Displays how many times SC codes are generated.	

7403^{*}	SC History
74031	Displays the histories of the latest 10 SC codes.

7502^{*}	Counter-Paper Jam	$[0 \sim 9999 / 0 / 1 /$ step $]$
75021	Displays the total number of copy paper jams.	

7503^{*}	Counter-Orgn Jam	$[0 \sim 9999 / 0 / 1 /$ step $]$
75031	Displays the total number of original jams,	

7504*	Counter-Each P Jam $\quad[0 \sim 9999$ / 0 / 1/step]
	Displays the total number of the paper jams classified by timing and location.
75041	Counter-Each P Jam (At power on)
	Paper jam occurs at power on.
750410	Counter-Each P Jam (Off-Regist NoFeed)
	Paper does not reach the registration sensor (from a paper tray).
750411	Counter-Each P Jam (Off-1 Vertical SN)
	Paper does not reach the relay sensor.
750412	Counter-Each P Jam (On-1 Vertical SN)
	Paper is caught at the relay sensor.
750421	Counter-Each P Jam (Off-2 Vertical SN)
	Paper does not reach the vertical transport sensor.
750422	Counter-Each P Jam (On-2 Vertical SN)
	Paper is caught at the vertical transport sensor.
750431	Counter Each P Jam (Off-3 Vertical SN)
	Paper does not reach the vertical transport sensor in the optional paper feed unit.
750432	Counter Each P Jam (On-3 Vertical SN)
	Paper is caught at the vertical transport sensor in the optional paper feed unit.
750450	Counter-Each P Jam (Off-Regist Bypass)
	Paper does not reach the registration sensor (from the by-pass tray).
750460	Counter-Each P Jam (Off-Regist Duplex)
	Paper does not reach the registration sensor during reverse-side printing (for duplex printing).
750470	Counter-Each P Jam (On-Regist SN)
	Paper is caught at the registration sensor.
7504120	Counter-Each P Jam (On-Exit SN)
	Paper is caught at the exit sensor (previous page).
7504121	Counter-Each P Jam (Off-Exit SN)
	Paper does not reach the exit sensor.
7504122	Counter-Each P Jam (On-Exit SN)
	Paper is caught at the exit sensor.

7504123	Counter-Each P Jam (Off-Dup Inverter)
	Paper does not reach the duplex inverter sensor (from the registration roller).
7504125	Counter-Each P Jam (On-Dup Inverter)
	Paper is caught at the duplex inverter sensor.
7504126	Counter-Each P Jam (Off-Dup Entrance)
	Paper does not reach the duplex entrance sensor.
7504127	Counter-Each P Jam (Off-Dup Entrance)
	Paper is caught at the duplex entrance sensor.
7504128	Counter-Each P Jam (Off-Duplex Exit)
	Paper does not reach the duplex exit sensor.
7504129	Counter-Each P Jam (On-Duplex Exit)
	Paper is caught at the duplex exit sensor.

7505*	Counter-Each O Jam $\quad[0 \sim 9999$ / 0 / 1/step]
	Displays the total number of the original jams on the ADF that have occurred at a certain timing or at a certain location.
7505210	Counter-Each O Jam (Off-Regist SN)
	The original does not reach the registration sensor.
7505211	Counter-Each O Jam (On-Regist SN)
	The original is caught at the registration sensor.
7505212	Counter-Each O Jam (Off-Relay SN)
	The original does not reach the exit sensor.
7505213	Counter-Each O Jam (On-Relay SN)
	The original is caught at the exit sensor.
7505214	Counter-Each O Jam (Off-Inverter SN)
	The original does not reach the reverse sensor.
7505215	Counter-Each O Jam (On Inverter SN)
	The original is caught at the reverse sensor.
7505216	Counter-Each O Jam (Insufficient gap)
	The distance between originals is not sufficient. This jam can occur when the original is not of the standard size.

7507*	Dsply-P Jam Hist									
75071	Displays the latest 10 paper-jam history. The list below shows the possible 22 codes:									
	1	10	11	12	21	22	31	32	50	60
	70	120	121	122	123	125	126	127	128	129
	130	131								
	The codes correspond	$\begin{aligned} & \text { orresp } \\ & \text { to SP } \end{aligned}$	$\begin{aligned} & \text { nd to the } \\ & 504-1, \end{aligned}$	men	of SP7	504. Fo corresp	exam nds to	$\begin{aligned} & e, \text { the } \\ & 3 P 7-5 \end{aligned}$		

7508*	Dsply-O Jam Hist
75081	Displays the total number of the original-jams history. The list below shows the possible seven codes:
	$\begin{array}{lllllll}210 & 211 & 212 & 213 & 214 & 215 & 216\end{array}$
	The codes correspond to the menus of SP7-505. For example, the code 210 corresponds to SP7-505-210, and the code 211 corresponds to SP7-505-211.

7801	Memory/Version/PN
78012	Memory/Version (BICU)
	Displays the version of the BICU board
78015	Memory/Version (ADF)
	Displays the P/N and suffix of the ADF ROM.

7803^{*}	Display-PM Count
78031	Displays the PM counter.

7804	Reset-PM Counter
78041	Resets the PM counter (SP7-803-1). When the program ends normally, the message "Completed" is displayed.

7807	Reset-SC/Jam Counters
78071	Resets the SC, paper, original, and total jam counters. When the program ends normally, the message "Completed" is displayed. SP7-807-1 does not reset the following logs: SP7-507 (Display-Paper Jam History) and SP7-508 (Display-Original Jam History).

7808	Reset-Counters
7808 1	Resets all counters except for the management counters. The management counters are the counters that are not changed by NVRAM Download (SP5-825-1; - NVRAMM Download (SP5-825-1) in section 5.1.11). When the program ends normally, the message the message "Completed" is displayed.

7810	Reset-Key Op Code
7810 1	Resets the key operator code. Use SP7-810-1 when the customer has forgotten the key-operator code. When the program ends normally, the message "Completed" is displayed, if the program ends abnormally, an error message is displayed. If the customer forgets the key operator code. To specify a new key-operator code, use the User Tools: System Settings \rightarrow Key Operator Tools \rightarrow Key Operator Code \rightarrow On \rightarrow Enter Key Operator Code.

7832^{*}	Display-Self-Diag
78321	Displays the SC codes and the number of their occurrences. Each number is in the range of 0 to 9999.

7991*	Dsply-Info Count
	Displays the total operating time or the total number of operations. The time is displayed in the following format: day:hour:minute:second.
79911	Dsply-Info Count (Dsply-Timer Count)
	The total of the time when the main switch is kept on (excluding the time when the safety switch is off [6.6.3]).
79912	Dsply-Info Count (Dsply-APS Working)
	The total of the time when the APS is working.
79913	Dsply-Info Count (Dsply-ID S Work)
	The total of the time when the ID sensor is working.
79914	Dsply-Info Count (Dsply-Dev Counter)
	The total number of paper outputs.
79915	Dsply-Info Count (Dsply-ID Er Count)
	The total number of ID-sensor errors.

7992^{*}	Reset-Info Count
79921	Reset-Info Count (Reset-Timer Count)
	Clears the counter of SP7-991-1.
79925	Reset-Info Count (Reset-ID Er Count)
	Clears the counter of SP7-991-5.

SP8-XXX (History)

8192^{*}	C: Total Scan PGS	$[0 \sim 9999999 / 0 / 1$ sheet/step]
81921	Displays the total number of scanned originals. The both sides are counted when the front and reverse sides of an original (fed from the ADF) are scanned.	

8221*	ADF Org Feed	[0 ~ 9999999 / 0 / 1 sheet/step]
82211	ADF Org Feed (Front)	
	Displays the total number of scanned front sides of originals fed from the ADF.	
82212	ADF Org Feed (Back)	
	Displays the total number of scanned reverse sides of originals fed from the ADF.	

8381* *	T: Total Prt PGS	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
83811	Displays the print count of all application programs.	

8382^{*}	C: Total Prt PGS	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
83821	Displays the print count of the copier application program.	

8391^{*}	L size Prt PGS (A3/DLT, Larger)	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
83911	Displays the print count of the AS/DLT size or larger paper.	

8411* *	Prints/Duplex	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
84111	Displays the total count of the duplex printing.	

8422*	C: PrtPGS/Dup Comb $\quad[0 \sim 9999999$ / 0 / 1 sheet/step]	
	Displays the total print count of copier application classified by combination/duple type.	
84221	C: PrtPGS/Dup Comb (Simplex > Duplex)	Original Print B121S909.WM
84222	C: PrtPGS/Dup Comb (Duplex > Duplex)	
84224	C: PrtPGS/Dup Comb (Simplex Combine)	
84225	C: PrtPGS/Dup Comb (Duplex Combine)	
84226	C: PrtPGS/Dup Comb (2>)	
84227	C: PrtPGS/Dup Comb(4>)	

8442^{*}	C: PrtPGS/Ppr Size
	Displays the total print count classified by paper size.
84421	C: PrtPGS/Ppr Size (A3)
84422	C: PrtPGS/Ppr Size (A4)
84423	C: PrtPGS/Ppr Size (A5)
84424	C: PrtPGS/Ppr Size (B4)
84425	C: PrtPGS/Ppr Size (B5)
84426	C: PrtPGS/Ppr Size (DLT)
84427	C: PrtPGS/Ppr Size (LG)
84428	C: PrtPGS/Ppr Size (LT)
84429	C: PrtPGS/Ppr Size (HLT)
8442254	C: PrtPGS/Ppr Size (Other (Standard))
8442255	C: PrtPGS/Ppr Size (Other (Custom))

	C: PrtPGS/Ppr Tray	$[0 \sim 9999999 / 0 / 1$ sheet/step]
	Displays the total print count classified by paper source.	
84511	C: PrtPGS/Ppr Tray (Bypass Tray)	
84512	C: PrtPGS/Ppr Size (Tray 1)	
84513	C: PrtPGS/Ppr Size (Tray 2)	
84514	C: PrtPGS/Ppr Size (Tray 3)	
84515	C: PrtPGS/Ppr Size (Tray 4)	

$\mathbf{8 4 6 2 *}^{*}$	C: PrtPGS/Ppr Type	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
	Displays the total print count classified by paper size.	
84621	C: PrtPGS/Ppr Type (Normal)	
84624	C: PrtPGS/Ppr Type (Thick)	
84627	C: PrtPGS/Ppr Size (OHP)	
84628	C: PrtPGS/Ppr Size (Other)	

8522*	C: PrtPGS/FIN (Sort)	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
85221	Displays the total number of printing classified by paper size.	

5.1.3 SP MODE TABLES-MFP

The tables in this section (5.1.3) list the service programs (SPs) that are available when the optional controller box (B658) is installed. For the SPs that are available without the optional controller box, see the previous section (5.1.2).

The following keys are used:

- Asterisk (*): The settings are saved in the NVRAM. Most of them return to the default values when you execute SP5-998-001 (Engine) and SP5-801-001 (All Clear) (-5.1.7).
- DFU: The menu is for the design/factory use only. You must not change the settings.
- Brackets ([]): The brackets enclose the setting rage, default value, and minimum step (with unit) as follows: [Minimum ~ Maximum / Default / Step].

SP1-XXX (Feed)

	Leading Edge Registration
	Adjusts the printing leading-edge registration from paper trays.
10011	All Trays
10012	By-pass
10013	Duplex

1003*	Paper Feed Timing	
	Adjusts the amount of buckle the paper feed clutch applies to the paper after the registration sensor is activated. A higher setting applies greater buckling.	
10031	1st tray	[0~10 / 5 / $1 \mathrm{~mm} / \mathrm{step}$]
10032	2nd tray (B122/B123 only)	[0~10 / 5 / $1 \mathrm{~mm} / \mathrm{step}$]
10033	Optional tray	[0~10 / 5/1 mm/step]
10034	By-pass feed	[0~10/6/1 mm/step]
10035	Duplex	[0 ~ $20 / 6 / 1 \mathrm{~mm} / \mathrm{step}$]

1007	Display By-pass	
10071	Display By-pass	Displays the by-pass paper width switch output.

$\mathbf{1 1 0 3}^{*}$	Fusing Idling	
	Selects whether or not fusing idling is performed. Normally disabled in this machine. However, enable this mode if fusing is incomplete on the 1st and 2nd copies, which may occur if the room is cold.	
11031	Fusing Idling	$[\mathbf{0}=\mathrm{No} / 1=\mathrm{Yes}]$

1105*	Fusing Temperature Adjustment	
	Adjusts the target fusing temperature. "Center" indicates the center of the roller; "End" indicates the front and rear ends.	
11051	Warm Up-Center	[140 ~ 180 / $160 / 1^{\circ} \mathrm{C} /$ step]
11052	Warm Up-End	
11053	Standby-Center	[140 ~ 170 / 155 / $1^{\circ} \mathrm{C} /$ step]
11054	Standby-End	[140~165/150/1 ${ }^{\circ} \mathrm{C} /$ step]
11055	Copying-Center	[140~185/160/1 ${ }^{\circ} \mathrm{C} /$ step]
11056	Copying-End	
11057	Low Level 2-Center	[0~80/60/1 ${ }^{\circ} \mathrm{C} /$ step]
11058	Low Level 2-End	
11059	Thick-Center	[140 ~ 185 / 175 / $1^{\circ} \mathrm{C} /$ step]
110510	Thick-End	
110511	Warm Up Low-Center	[140 ~ $180 / 170 / 1^{\circ} \mathrm{C} /$ step]
110512	Warm Up Low-End	

1106	Display Fusing	
11061	Display Fusing (Center)	Displays the fusing temperature on the center or on the ends of the hot roller.
11062	Display Fusing (End)	tha

1107*	Fusing Soft Start	
	Adjusts the number of zero-cross cycles of the fusing lamp AC supply needed to bring the fusing lamp power to 100% while bringing the lamp up to the standby temperature or while copying. Increase this value if the machine is experiencing sudden power dropouts (6.13.5).	
11071	Warm Up Soft Start	[$0=10$ cycles / $1=20$ cycles / $\mathbf{2}=50$ cycles]
11072	Other Soft Start	[$0=5$ cycles / $1=10$ cycles / $2=20$ cycles]

$110 \mathbf{8}^{*}$	Set-Fusing Start	$[0=1 \mathrm{~s} / 1=1.5 \mathrm{~s} / 2=2 \mathrm{~s}]$
11081	Specifies the interval for fusing-temperature control $(-6.13 .5)$.	

1109	Nip Band Check
11091	Checks the fusing nip band $($-3.10.8).

$111 \mathbf{1 0}^{*}$	Fan Control Timer
11101	$[30 \sim 60 / \mathbf{3 0} / 1 \mathrm{~s} /$ step] Inputs the fan control time. The fan maintains normal speed for the specified time after occurrence of an SC or following entry into Warm-up mode, Low Power mode, or Night/Off mode.

1902	Display-AC Freq.
19021	Displays the fusing lamp power control frequency (as detected by the zero cross signal generator). The displayed value is $1 / 5$ the actual frequency: $10=50 \mathrm{~Hz}, 12=$ 60 Hz.

1903*	Feed Clutch Boost	
	Adjusts the amount of extra push that the feed clutch gives to the paper after the skew has been corrected at registration. This feature helps the registration roller feed certain types of paper (such as thick paper). Increase the value if thick paper is jamming after feeding from the registration roller.	
19031	By-pass tray	[$0 \sim 10 / 6 / 1 \mathrm{~mm} / \mathrm{step}$]
19032	2nd, 3rd, 4th tray	[$0 \sim 10 / 3 / 1 \mathrm{~mm} / \mathrm{step}$]

$\mathbf{1 9 0 8}^{*}$	Optional Tray Adj.	
	Adjusts the reverse time for the upper and lower paper lift motors.	
19081	1st optional	$[-2 \sim+2 / 0 / 1 /$ step $]$
19082	2nd optional	- Detailed Descriptions - Optional Paper Tray Unit

1911*	By-pass Envelope
19111	[0 = Disabled / 1 = Enabled
	The program dedicated to envelope printing runs when you enable this program (SP1-911-001) and you select "Thick Paper" as the paper type of the by-pass tray ((ब)圆 > System Settings > Tray Paper Settings > Paper Type: Bypass Tray).

SP2-XXX (Drum)

2001*	Charge Roller Bias Adjustment
20011	Printing $\quad[-2100 \sim-1500 / \mathbf{1 7 0 0} / 1 \mathrm{~V} /$ step $]$
	Adjusts the voltage applied to the charge roller when printing. The actually applied voltage changes automatically as charge roller voltage correction is carried out. The value you set here becomes the base value on which this correction is carried out.
20012	ID sensor pattern $\quad[0 \sim 400 / \mathbf{3 0 0} / 1 \mathrm{~V} /$ step $]$
	Adjusts the voltage applied to the charge roller when generating the Vsdp ID sensor pattern (as part of charge roller voltage correction). The actual charge-roller voltage is obtained by adding this value to the value of SP2-001-1.

2201*	Development Bias Adjustment	
22011	Printing	[-1500~-200/-650 / $1 \mathrm{~V} /$ step]
	Adjusts the voltage applied to the development roller when printing. This can be adjusted as a temporary measure if faint copies are being produced due to an aging drum.	
22012	ID sensor pattern	$\begin{aligned} & {[-2=\mathrm{LL}(220 \mathrm{~V}) /-1=\mathrm{L}(260 \mathrm{~V}) / 0=\mathrm{N}(300 \mathrm{~V}) / 1=} \\ & \mathrm{H}(340 \mathrm{~V}) / 2=\mathrm{HH}(380 \mathrm{~V})] \end{aligned}$
	Adjusts the voltage applied to the development roller when generating the ID sensor pattern. The actual voltage applied is this setting plus the value of SP2-2011. The setting affects ID sensor pattern density, which in turn affects the toner supply.	

$\mathbf{2 2 1 3 ^ { * }}$	Outputs after Near End
22131	$[0=50$ pages $/ 1=20$ pages $]$ Sets the number of copy/print/fax pages that can be made after toner near-end has been detected. Reduce the number of pages if the user normally makes copies with a high image ratio.

$\mathbf{2 2 1 4}$	Developer Initialization
22141	Initializes both the TD sensor toner supply target voltage and the TD sensor gain value. Carry this out after replacing the developer or the TD sensor.

2221	ID Sensor Error Analysis (-5.1.5)	
22211	Vsg	Displays the Vsg value.
22212	Vsp	Displays the Vsp value.
22213	PWM	Displays the PWM value.
22214	Vsdp	Displays the Vsdp value.
22215	Vt	Displays the Vt value.
22216	Vts	Displays the Vts value.

2301*	Transfer Current Adjustment	
23011	Normal paper	$\begin{aligned} & {[-2=-4 \mathrm{~mA} /-1=-2 \mathrm{~mA} / 0=0 \mathrm{~mA} / 1=2 \mathrm{~mA} / 2} \\ & =+4 \mathrm{~mA}] \end{aligned}$
	Adjusts the current applied to the transfer roller when feeding from a paper tray. Use a high setting if the user normally feeds relatively thick paper (within spec) from a paper tray (6.12.2).	
23012	Thick/Special paper	$\begin{aligned} & {[-2=-4 \mathrm{~mA} /-1=-2 \mathrm{~mA} / 0=0 \mathrm{~mA} / 1=2 \mathrm{~mA} / 2} \\ & =+4 \mathrm{~mA}] \end{aligned}$
	Adjusts the current applied to the transfer roller when feeding from the by-pass tray. Use a high setting (a) if the user normally feeds relatively thick paper from the bypass tray, or (b) if waste toner is re-attracted from the drum (which can occur when using transparencies). 6.12.2	
23013	Duplex	$\begin{aligned} & {[-2=-4 \mathrm{~mA} /-1=-2 \mathrm{~mA} / 0=0 \mathrm{~mA} / 1=2 \mathrm{~mA} / 2} \\ & =+4 \mathrm{~mA}] \end{aligned}$
	Adjusts the current applied to the transfer roller when carrying out a duplex job. Use this SP if there is poor image transfer on the rear side of duplex copies (6.12.2).	
23014	Cleaning	[-10 ~ 0 / -1 / $1 \mathrm{~mA} / \mathrm{step}$]
	Adjusts the current applied to the transfer roller for roller cleaning. Increase the current if toner remains on the roller after cleaning. (Remaining toner may cause dirty background on the rear side.) (6.12.2)	

2802	Forced Developer Churning
28021	Initializes the developer and checks the TD sensor output (Vt). The machine mixes the developer for 2 minutes while reading and displaying the Vt value. The machine does not initialize the TD sensor output. If the machine has not been used for a long period of time, prints may have a dirty background. In this case, use this SP mode to mix the developer. The message "Completed" is displayed when the program ends normally.

2908	Forced Toner Supply
29081	Forces the toner bottle to supply toner to the toner supply unit. Press "1" to start. The machine continues to supply toner until the toner concentration in the development unit reaches the standard level, or for up to 2 minutes (whichever comes first).

2915*	Polygon Mirror Motor Idling Time
29151	$[0=$ None / 1 = 15 s / 2 = 25 s] Selects the polygon mirror motor idling time. To increase the speed of the first copy, the mirror motor begins idling when the user sets an original, touches a key, or opens the platen cover or DF. If this setting is left at the default (15 s), the motor will stop if the user does nothing for 15s. If the setting is "0", the motor will not switch off during standby. (But note that regardless of the setting, the motor will switch off when the machine enters energy saver mode.)

$\mathbf{2 9 2 1 *}^{*}$	Toner Supply Mode
29211	$[\mathbf{0}=$ Sensor $1 / 1$ = Sensor 2 (DFU) / 2 = Fixed 1 (DFU) / 3 = Fixed 2]
Selects the toner supply mode. Under normal conditions this should be set to " 0 ".	
You can temporarily change this to " "" if the TD sensor is defective. Do not set to	
"1" or "2", as these are for design use only (6.9 .6).	

$\mathbf{2 9 2 2}^{*}$	Toner Supply Time
29221	$[0.1 \sim 5.0 / 0.4 / 0.1$ s/step]
	Adjusts the toner supply motor ON time for Sensor 1 and Sensor 2 toner supply mode. Accordingly, this setting is effective only if SP2-921 is set to "0" or "1" Raising this value increases the toner supply motor ON time. Set to a high value if the user tends to make many copies having high proportions of solid black image areas (6.9.6).

$\mathbf{2 9 2 3 *}^{*}$	Toner Recovery Time
2923 1	$[3 \sim 60 / 30 / 1 \mathrm{~s} /$ step]
	Adjusts the toner supply motor ON time used during toner recovery from Toner Near End or Toner End. This setting is effective only if SP2-921 is set to "0" Since toner recovery is carried out in 3-second cycles, the input value should be a multiple of 3 (3, 6, 9...). 6.9.6

2925*	Toner Supply Rate
29251	Adjusts the toner supply time for fixed toner supply mode. This setting is effective only if SP2-921 is set to "2" or " 3 ". [0 $~ 7 / 0] t=200 \mathrm{~ms}$, and settings are as follows $\begin{array}{ll} 0=t & 4=12 t \\ 1=2 t & 5=16 t \\ 2=4 t & 6=\text { on continuously } \\ 3=8 \mathrm{t} & 7=0 \mathrm{~s} \end{array}$ Raising this value increases the toner supply motor ON time. Set to a high value if the user tends to make many copies having high proportions of solid black image areas (6.9.6).

2926^{*}	Standard Vt
29261	[0.00~5.00 / 2.50 / 0.01 V/step] DFU Adjusts Vts (the Vt value for new developer). The TD sensor output is adjusted to this value during the TD sensor initial setting process]. This SP is effective only when SP2-921 is " 0 ", "1", or " 2 ".

2927^{*}	ID Sensor Control
29271	$[0=$ No $/ 1=$ Yes $]$ Selects whether the ID sensor is or is not used for toner density control. This value should normally be left at " 1 ". If the value is " 0 ", dirty background may occur after long periods of non-use.

2928	Toner End Clear
2928 1	Clears the toner end condition without adding new toner. The following are cleared: - Toner end indicator (goes out). - Toner near-end counter - Toner near-end level This function should generally not be used. If you clear the toner end condition without adding new toner, there is a risk that the drum may eventually begin to attract carrier after many more copies are made and toner runs out. This attracted carrier may damage the drum.

$\mathbf{2 9 2 9 *}$	Vref Limits	
	Adjust the upper or lower Vref limit.	
29291	Upper	$[0.50 \sim 3.50 / \mathbf{3 . 2 0} / 0.01 \mathrm{~V} /$ step $]$ DFU
29292	Lower	$[0.50 \sim 3.50 / \mathbf{0 . 7 0 / 0 . 0 1 \mathrm { V } / \text { step }] \text { DFU }}$

2994^{*}	ID Sensor Detection Temperature	$\left[30 \sim 90 / \mathbf{3 0} / 1^{\circ} \mathrm{C} /\right.$ step $]$
29941	While the machine is recovering from an energy saver mode, or while the machine starts, the controller ignores the ID-sensor signals if the fusing temperature is at the specified value or higher.	

2996^{*}	Transfer Roller Cleaning
29961	Selects whether the transfer roller is cleaned before each copy job. Set this to "1" if dirty background is appearing on the reverse side of the first page of copy jobs. Note that this will increase the time required to generate the first copy. If the setting is "0", the transfer roller is never cleaned (-6.12.3).

$\mathbf{2 9 9 8}$	Main Scan Magnification	$[-0.5 \sim+0.5 / \mathbf{0 . 0} / 0.1 \% /$ step $]$
29981	Adjusts the magnification along the main scan direction, for all print modes (copy, fax, printing). The specification is $100 \pm 1.0 \%$ (3.13 .1$).$	

SP4-XXX (Scanner)

4008*	Sub-Scan Magnification (Scanner)	$[-0.9 \sim+0.9 / 0.0 / 0.1 \% /$ step $]$
40081	Adjusts the actual sub-scan direction scanning magnification. The higher the setting, the lower the scanner motor speed (3.13 .2$).$	

4009*	Main Scan Magnification (Scanner)	$[-0.9 \sim+0.9 / 0.0 / 0.1 \% /$ step $]$
40091	Adjusts the magnification along the main scan direction, for scanning ($-3.13 .2)$. - The specification is $100 \pm 1.0 \%$ - Main scan magnification is implemented in steps of 0.5. Accordingly, your input value should be a multiple of $0.5(-1.0,-0.5,0,+0.5$, or +1.0$)$	

4010^{*}	Leading Edge Registration (Scanner)	$[-5.0 \sim+5.0 / 0.0 / 0.1 \mathrm{~mm} / \mathrm{step}]$
40101	Adjusts the leading edge registration for scanning in platen mode (-3.13.2).	
	$\bullet(-):$ The image moves toward the leading edge. \bullet (+): The image moves toward the trailing edge. The specification is $2 \pm 1.5 \mathrm{~mm}$.	

4011* *	Side-to-side Registration (Scanner)	$[-4.2 \sim+4.2 / 0.0 / 0.1 \mathrm{~mm} / \mathrm{step}]$
40111	Adjusts the side-to-side registration for scanning in platen mode ($-3.13 .2)$. \bullet - Increasing the value shifts the image to the right - The specification is $2 \pm 1.5 \mathrm{~mm}$.	

4012*	Scan Erase Margin	
	Adjusts the scanning margin individually for each of the four edges. It is generally best to adjust the scanning margin as little as possible, and use the printing margin for image adjustments.	
40121	Leading edge	[0~9.0 / 1.0 / 0.1 mm/step]
40122	Trailing edge	
40123	Left	
40124	Right	

4013	Scanner Free Run
40131	Performs a scanner free run with the exposure lamp on. Press ON or to start. Press OFF to stop.

4015*	White Plate Scanning
40151	Start position
	Adjusts the scanning start position on the white plate for auto shading. The base value stored in the machine is 15.2 mm toward the white plate from the scanner H.P. This SP setting specifies the offset from this base value.
40152	Scanning length
	Adjusts the length of the white plate scan, in the main scan direction. The scan begins at the start position set above [in SP4-015-1] and extends for the specified length. The base value stored in the machine is 4.76 mm. This SP setting specifies the offset from this base value.

4301	Display-APS Data
43011	Displays the status of the APS sensors and platen/DF cover sensor (5.1.17).

4303* *	APS Small Size Original	$[0=$ No (not detected)/1 = Yes (A5/HLT LEF) $]$
43031	Selects whether or not the copier will consider the original to be A5/HLT LEF when the APS sensors cannot detect its size. If "Yes" is selected, paper sizes that cannot be detected by the APS sensors are regarded as A5/HLT LEF. If "No" is selected, "Cannot detect original size" will be displayed.	

4305^{*}	APS Priority	$[0=$ Normal / 1 = A4/LT / $2=8 \mathrm{~K} / 16 \mathrm{~K}]$
43051	1. A4/LT • North America model: When the ASP detects the LT size, the controller interprets it as the A4 size. • Other models: When the ASP detects the A4 size, the controller interprets it as the LT size. 2. 8K/16K (for the China model only) •When the ASP detects the A3/B4 SEF, the controller interprets it as the 8K SEF. • When the ASP detects the B5/A4 SEF, the controller interprets it as the 16K SEF. • When the ASP detects the B5/A4 LEF, the controller interprets it as the 16K LEF. The Europe model interprets undetected original sizes as A5 LEF under the following conditions: i. SP4-303-001 is "Yes," and ii. SP4-305-001 is "Normal" The Europe model interprets undetected original sizes as LT SEF under the following conditions: i. SP4-303-001 is "Yes," and ii. SP4-305-001 is "A4/LT"	

4428	Scan Auto-Adjustment
44281	Performs the automatic scanner adjustment. Use this SP mode after replacing the white plate.

4901	SBU White Level Adjustment
49011	Black Display-Error $\quad[0=$ Normal / 1 = Error]
	Displays the return code of the black-level adjustment. When an error is detected, SC143 or SC145 is generated.
49012	Black Feedback-EVEN [0~8191]
	Displays the feedback value of the even channels given by the SBU. Normally, the value is $1,2,3, \ldots, 8188,8189$, or 8190 . However, machine may operate normally even when the value is 0 or 8191 .
49013	Black Feedback-ODD [0~8191]
	Displays the feedback value of the odd channels given by the SBU. Normally, the value is $1,2,3, \ldots, 8188,8189$, or 8190 . However, machine may operate normally even when the value is 0 or 8191 .
49014	Black Display-Target $[0 \sim 63 / 10 /$ step]
	Displays the target value for the black-level adjustment executed during machine initialization. Normally, the value is 10 . Other values indicate that the adjustment has ended unsuccessfully.
49015*	White Target $\quad[0 \sim 511 / 511 / 1 /$ step $]$
	Displays the target value for the white-level adjustment.
49016	White Result $\quad[0 \sim 511 / 0 / 1 /$ step $]$
	Displays the result of the white-level adjustment.
49018	White Display-Error $\quad[0=$ Normal / 1 = Error $]$
	Displays the return code of the white-level adjustment. When an error is detected, SC143 is generated.
49019	White Display-Overflow $\quad[0=$ Normal / 1 = Error $]$
	Displays a return code of the white-level adjustment. The code "1" (error) is returned if the adjustment result is not in the range of the values in SP4-901-6.

490110	White Number of Attempt	[0~20 / 0 / 1/step]
	Displays how many times the white-level adjustment is retried. The value does not include the first execution of the white adjustment. For example, if the value is " 2 ", this indicates that the white-level adjustment has been executed three times. The white-level adjustment can be executed 20 times or less. Therefore, if the value is "20," this indicates that the white-level adjustment has ended abnormally (as described, the value " 20 " does not include the first execution). If the white-level adjustment is unsuccessful, the machine uses the result of the latest, successful white-level adjustment.	
4901 11*	Auto Adjustment Setting	[222 ~ 281 / 256 / 1/step]
	Displays the parameter of the white-level adjustment. The value is based on the result of SP4-901-12.	
490112	Auto Adjustment-Result	[0~600 / 0 / 1/step]
	Displays the result of the white-level adjustment. Normally, the value is between 228 and 281 (including the both values). When the value is normal, it is stored as the value of SP4-901-11.	
490114	Auto Adjustment-Error	[0 = Normal / 1 = Error]
	Displays a return code of the white-level adjustment. The code "1" (error) is returned if the adjustment result value is less than 228 or larger than 281 (SP4-901-12).	

4902^{*}	Exposure Lamp ON
49021	Turns the exposure lamp on or off. To turn off the exposure lamp, select "OFF". (The exposure lamp shuts off automatically after 180 seconds.)

4903*	ADS Level	$[0 \sim 255 / 252 / 1 /$ step $]$
49031	Adjusts the ADS level.	

4904* *	ADS Lower Limit	$[0 \sim 255 / 80 / 1 /$ step $]$
49041	Adjusts the ADS lower limit.	

4905^{*}	ADS Level	$[0=$ All / $1=$ One $]$
49051	Checks the whole area (0 = All) or the area between 15 mm and 90 mm from the left edge ($1=$ One $)$ to adjust the ADS level.	

4921*	Image Adj Selection (6.5.4)	
49211	Image Adj Selection (Copy)	[$0 \sim 10$ / 0 / 1]
	Selects which mode the settings from SP4-922 to SP4-932 are used for.$\begin{array}{llll} 0=\text { None } & 1=\text { Text } 1 & 2=\text { Text } 2 & 3=\text { Photo } 1 \\ 4=\text { Photo } 2 & 5=\text { Photo } 3 & 6=\text { Special } 1 & 7=\text { Special } 2 \\ 8=\text { Special } 3 & 9=\text { Special } 4 & 10=\text { Special } 5 & \end{array}$	
49212	Image Adj Selection (Fax) [0~5/0/1]	
	Selects which mode the settings from SP4-922 to SP4-932 are used for.$\begin{array}{llll} 0=\text { None } & 1=\text { Text } 1 & 2=\text { Text } 2 & 3=\text { Photo } 1 \\ 4=\text { Photo } 2 & 5=\text { Special } 1 & & \\ \hline \end{array}$	
49213	Image Adj Selection (Scanner) $[0 \sim 4 / 0 / 1]$	
	Selects which mode the settings from SP4-922 to SP4-932 are used for. $0=$ None $\quad 1=$ Text $1 \quad 2=$ Text $2 \quad 3=$ Photo 1 $4=$ Photo 2	

4922^{*}	Scanner Gamma
	Selects "text" or "photo" as the priority output mode. This setting is applied to all image processing modes of SP4-921.* 6.5.4 IPU
49221	Scanner Gamma (Copy)
4922	[0=System default/1=Text/2=Photo]
49223	Scanner Gamma (Fax)

4923*	Notch Selection (-6.5.4)	
	Selects the value of the center ID adjustment notch for the ID adjustment LEDs. - Normally the center notch is 3 (range $1-5$). If -1 is selected, each notch shifts down (becomes lighter). If +1 is selected, each notch shifts up (becomes darker). - This setting is applied to all image processing modes of SP4-921.	
49231	Notch Selection (Copy)	[-1 = Light / 0 = Normal / +1 = Dark]
49232	Notch Selection (Fax)	
49233	Notch Selection (Scanner)	

4926*	Adjusts the texture removal level that is used with error diffusion. 0 : The default value for each mode is used. Text 1, Photo 2, Special 2, and Special 5 have a default of 3 and Photo 1-3 have a default of 1 . 1: No removal applied. $2-5$: Removal applied at the level specified here. The higher the setting (level), the less clear the image will become (more texture removal). This setting is only applied to the originals in SP4-921.	
49261	Texture Removal (Copy)	[0~6/0/1/step]
49262	Texture Removal (Fax)	
49263	Texture Removal (Scanner)	

4927*	Line Width Correction	
	Adjusts the line width correction algorithm. Positive settings produce thicker lines; negative settings produce thinner lines. This setting is only applied to the originals in SP4-921 (6.5.4).	
49271	Line Width Correction (Copy)	[-2 ~ 2 / 0 / 1/step]
49272	Line Width Correction (Fax)	
49273	Line Width Correction (Scanner)	

4928*	Independent Dot Erase	
	Selects the dot erase level. Highe only applied to the originals in SP	ettings provide greater erasure. This setting is 921 (-6.5.4).
49281	Independent Dot Erase (Copy)	[-2 ~ 2 / 0 / 1/step]
49282	Independent Dot Erase (Fax)	
49283	Independent Dot Erase (Scanner)	

4929*	Positive/Negative	[0 = No, 1 = Yes]
	Inverts white and black. This setting is only applied to the originals in SP4-921 6.5.4).	
49291	Positive/Negative (Copy)	
49292	Positive/Negative (Fax)	

4930^{*}	Sharpness-Edge
	Adjust the clarity. This setting is only applied to the originals in SP4-921 (6.5.4).
49301	Sharpness-Edge (Copy)
49302	Sharpness-Edge (Fax)
49303	Sharpness-Edge (Scanner)

4931* *	Sharpness-Solid	$[-2 \sim 2 / 0 / 1 /$ step $]$
	Adjust the clarity. This setting is only applied to the originals in SP4-921 (6.5.4).	
49311	Sharpness-Solid (Copy)	
49312	Sharpness-Solid (Fax)	
49313	Sharpness-Solid (Scanner)	

4932^{*}	Sharpness-Low ID
	Adjust the clarity. This setting is only applied to the originals in SP4-921 (6.5.4).
49321	Sharpness- Low ID (Copy)
49322	Sharpness- Low ID (Fax)
4932 3	Sharpness- Low ID (Scanner)

4941*	White Line Erase	[0~2 / 1 / 1/step]
49411	Selects the white line erase level (6.5.4). 0 : None 1: Weak 2: Strong - This setting is effective only Photo 1 , Photo 3 , Special 3 or Special 4 mode. - 0 : White line erase is not used, and white level correction is used instead- - This setting is applied regardless of what mode has been selected in SP4-921.	

4942^{*}	Black Line Erase	$[0 \sim 3 / 2 / 1 /$ step $]$
49421	Selects the black line erase level. This setting is effective only when originals are scanned by the $A(R) D F(\sim 6.5 .4)$. $[0=N o / 1=V e r y ~ w e a k ~ / 2=$ Weak / $3=$ Strong $]$ This setting is applied regardless of what mode has been selected in SP4-921.	

SP5-XXX (Mode)

$\mathbf{5 0 0 1}$	All Indicators On
50011	All LEDs turn on. The LCD turns on or off every 3 seconds. Press the reset key to end this program.

| SSP
 5044^{*} | Operation Panel Bit Switch DFU |
| :--- | :--- | :--- |

SSP 5104^{*}	A3/DLT Double Count	$[0=$ Enabled $/ 1=$ Disabled $/$ $2=$ Disabled if the size is undetected]
51041	Selects whether the machine counts twice for each sheet of A3/11" $\times 17 "$ " If this is set to "Yes" is selected, the total (mechanical) counter and the current user counter will both increment by two for each A3/11" $\times 17$ " sheet.	

5113^{*}	Optional Counter Type	0: None 5: MF key card (Peace) Japan Only 11: MF key card (Increment) 12: MF key card (Decrement)
51131	Selects the corresponding key for installed devices such as coin lock.	

5118*	Disable Copying DFU
5120*	Clr-OP Count Remv $\quad[0=\mathrm{Yes} / 1=$ Standby only / 2=No]
51201	Determines under which conditions the copy job settings are reset when the key counter is removed. With 0 , the settings are cleared if the counter is removed at the end of a job or midway through a job. With 1, they are only cleared if the counter is removed at the end of a job. With 2 , they are not cleared at all, under either condition. With duplex copies, the job settings are always preserved, regardless of the setting of this SP mode.

$\mathbf{5 1 2 1}^{*}$	Count Up Timing	$[0=$ Feed In / $1=$ Exit $]$
51211	Selects whether the key counter increments at time of paper feed-in or at time of paper exit.	

5127^{*}	APS Mode	$[0=$ Enabled $/ 1=$ Disabled $]$
51271	Enables or disables the APS mode..	

| 5162^{*} | Application Switching Method $\quad[\mathbf{0}=$ Soft Key Set $/ 1=$ Hard Key Set $]$ |
| :---: | :--- | :--- |
| 51621 | Determines whether the application screen is switched with the hardware switch or
 the software switch. |

5302^{*}	Set Time	$[-1440 \sim+1440 / 0 / 1$ minute/step $]$
53022	Species the difference between your local time and GMT.	

5307*	Summer Time
53071	Summer Time On/Off
	Validates or invalidates the daylight-saving-time settings (SP5-307-3 and 4).
53073	Summer Time Start
	Specifies the start of the daylight saving time. SP5-307-1 validates SP5-307-3.
53074	Summer Time End
	Specifies the end of the daylight saving time. SP5-307-1 validates SP5-307-4.

5404^{*}	User Code Count Clear
54041	Initializes the user code counter.

5501*	PM Alarm Interval
55011	PM Alarm Interval (Printout) $\quad[0 \sim 9999$ / 0 / OK copies/step]
	Specifies when the PM alarm occurs.
55012	PM Alarm Original Count Alarm [0= Off / 1 = On]
	Enables or disables the original count alarm.

$\mathbf{5 5 0 4}^{*}$	Jam Alarm
5504 1	Sets the alarm to sound for the specified jam level (document misfeeds are not
	included).
	[0~3/3/1 step]
	0: Zero (Off)
	1: Low (2.5K jams)
	2: Medium (3K jams)
3: High (6 K jams)	

5505^{*}	Error Alarm	$[0 \sim 255 / 20 / 1$ hundred sheets/step]
55051	Specifies the number of paper (in hundred) used as the error alarm level. The error alarm starts if 5 SC codes (or more) are generated before the copier prints the specified number of paper. When the copier has printed the specified number of paper, the SC code counter (of this SP) is cleared to zero.	

5507*	Supply Alarm	
55071	Paper Supply Alarm	0: Off, 1: On, DFU
55073	Toner Supply Alarm	0: Off, 1: On, DFU
5507128	Interval :Others	[00250 ~ 10000 / 1000 / 1 Step] DFU
5507132	Interval :A3	
5507133	Interval :A4	
5507134	Interval :A5	
5507141	Interval : B4	
5507142	Interval : B5	
5507160	Interval :DLT	
5507164	Interval :LG	
5507166	Interval :LT	
5507172	Interval :HLT	

5508*	CC Call	
5508 1*	Jam Remains	0: Disable, 1: Enable
	Enables/disables initiating a call for an unattended paper jam.	
55082^{*}	Continuous Jams	0: Disable, 1: Enable
	Enables/disables initiating a call for consecutive paper jams.	
55083^{*}	Continuous Door Open	0: Disable, 1: Enable
	Enables/disables initiating a call when the front door remains open.	
55084^{*}	Low Call Mode	0: Normal mode, 1: Reduced mode
	Enables/disables the new call specifications designed to reduce the number of calls.	
5508 11*	Jam Detection: Time Length	[03~30/10/1]
	Sets the time a jam must remain before it becomes an "unattended paper jam". This setting is enabled only when SP5508 004 is set to 1 .	
5508 12*	Jam Detection: Continuous Count	[02~10 / 5 / 1]
	Sets the number of consecutive paper jams required to initiate a call. This setting is enabled only when SP5508 004 is set to 1 .	
5508 13*	Door Open: Time Length	[03~30 / 10 / 1]
	Sets the length of time the door remains open before the machine initiates a call. This setting is enabled only when SP5508 004 is set to 1 .	
550821	CC Call: Long Time Jam	[0 = Auto call / 1 = Alarm]
	Selects the machine reaction to long time jams.	
550822	CC Call: Continuous Jam	[0 = Auto call / 1 = Alarm]
	Selects the machine reaction to continuous jams.	
550823	CC Call: Door Open	[0 = Auto call / 1 = Alarm]
	Selects the machine reaction to door open.	

5801	Memory Clear
58011	All Clear
	Executes the following memory clears at the same time: SP5-801-2 through 12.
58013	SCS
	Initializes the system-control-service settings.
58014	IMH Memory Clear
	Initializes the image-memory-handler settings.
58015	MCS
	Initializes the memory-control-service settings.
58016	Copier application
	Initializes the copier-application settings.
58018	Fax application
	Initializes the fax-application settings.
	Printer application
58019	Snitalizes the printer-application settings.
	Initializer application
580110	Web service/Neanner-application settings.
	Deletes the network application application management files and thumbnails, and initializes the job login ID.

580111	NCS
	Initializes the network-control-service settings: the system defaults and interface settings (including IP addresses), Smart Net Monitor for Administrator, Web Status Monitor settings, and the TELNET settings.
580112	R-Fax Initializes the job log in ID, Smart Net Monitor for Administrator, job history, and local storage file numbers.
580114	Clear DCS Settings
580115	Clear UCS Settings

5802	Machine Free Run
58021	Starts a free run of both the scanner and the printer. Press "ON" to start; press "OFF" to stop.

5803	Input Check
	-5.1 .8

	Output Check
	-5.1.9

5807^{*}	Area Selection				
5807	Selects the display language group.				
	1	Japan	2	North America	3
Europe	4	Taiwan			
	5	Asia	6	China	7
	Korea				
	SP5-807-001 is not cleared by SP5-801-001 and SP5-998-001 (-5.1 .7).				

\section*{| 5810 | SC Code Reset |
| :--- | :--- |}

58101 Resets all level-A service call conditions, such as fusing errors. If the reset is successful, the display shows "Completed." If the reset fails, an error message is displayed. 4.1 Service Call Conditions

5811^{*}	Serial Num Input
58111	-5.1 .10

5812*	Service TEL
58121	Service TEL (Telephone)
	Use this to input the telephone number of the service representative. (The number is displayed when a service call condition occurs.) To input a dash, press \because. To delete the current telephone number, press ©
58122	Service TEL (Facsimile)
	Use this to input the fax number printed on user counter reports. To input a dash, press $)^{\circ}$. To delete the current fax number, press © (

5816*	Remote Service
58161	I/F Setting $[0=$ Remote diagnostics off/1=Serial (CSS or NRS) remote diagnostics on/2=Network remote diagnostics]
	Enables or disables the remote diagnostics function.
58162	CE Call
	Allows the customer representative to start or end the remote machine check using CSS or NRS by pressing the center report key.
58163	Function Flag $\quad[\mathbf{0}=$ Disabled / $1=$ Enabled $]$
	Enables or disables remote diagnosis via the NRS network.
58166	Device Information Call Display [$\mathbf{0}=$ Disabled / 1 = Enabled]
	Determines whether the device information call (NRS) is displayed.
58167	SSL Disable $\quad[0=$ Disabled / 1 = Enabled]
	Determines whether the SSL sends the remote-communication-gate confirmation.
58168	RCG Connect Timeout $[1 \sim 90 / 10 / 1$ second/step]
	Sets the timer for the remote-communication-gate connection (NRS).
58169	RCG Write to Timeout \quad [0~100/60/1 second/step]
	Sets the timer for writing data to the remote communication gate (NRS).
581610	RCG Read Timeout \quad [0~100/60/1 second/step]
	Sets the timer for reading data from the remote communication gate (NRS).
581611	Port 80 Enable
	Determines whether permission is granted for access to the SOP via Port 80 (NRS).

5821^{*}	Remote Service Address	Japan Only.
5821 1 *	CSS PI Device Code	Sets the PI device code. After changing this setting, you must switch the machine off and on.
5821 2* *	RCG IP Address	Sets the IP address of the RCG (Remote Communication Gate) destination for call processing at the remote service center. [000000000h ~ FFFFFFFFh/ 000000000h /

5824	NVRAM Upload
58241	-5.1 .11

5825	NVRAM Download
$\mathbf{1}$	-5.1 .11

5828^{*}	Network Setting
582874^{*}	Delete Password
	Deletes the NCS (Network Control Service) password. Sets the Telnet, WSM (Web

SSP		
$\mathbf{5 8 3 4}$	Operation Panel Image Exposure	[0: Off (disabled)/1: On (enabled)]
58341	Enables and disables the operation panel read (dump) feature. After powering on the machine, set this option to 1 to enable this feature. To reset the machine to 0, the machine must be turned off and on again. Selecting 0 for this option without cycling the power off and on does not restore the default setting (0).	

5839*	IEEE 1394
58394	Host Name \quad Enter name
	Enter the name of the device used on the network. Example: RNP0000000000
5839 7*	Cycle Master ${ }^{\text {OFF / ON }}$
	Enables or disables the cycle master function for the 1394 bus standard.
5839 8*	BCR mode
	Determines how BCR (Broadcast Channel Register) operates on the 1394 standard bus when the independent node is in any mode other than IRM. (NVRAM: 2bits) Always Effective: Writes from the IRM. Standard: Copies BCR of the IRM after no data is written from the IRM after the prescribed time has elapsed. IRM Color Copy: BCR normally enabled.
5839 9*	IRM 1394a Check
	Conducts a 1394a check of IRM when the independent node is in any mode other than IRM. OFF: Checks whether IRM conforms to 1394a. ON: After IRM is checked, if IRM does not conform then independent node switches to IRM.
5839 10*	Unique ID
	Lists the ID (Node_Unique_ID) assigned to the device by the system administrator. OFF: Does not list the Node_Unique_ID assigned by the system administrator. Instead, the Source_ID of the GASP header in the ARP is used. ON: The Node_Unique_ID assigned by the system administrator is used, and the Source_ID of the GASP header in the ARP is ignored. Also, when the serial bus is reset, extra bus transactions are opened for enumeration.
5839 11*	Logout
	Handles the login request of the login initiator for SBP-2. (1bit) OFF: Disable (refuse login). Initiator retry during login. Login refusal on arrival of login request (standard operation) ON: Enable (force logout). Initiator retry during login. Login refusal on arrival of login request, and the initiator forces the login.
5839 12*	Login
	Enables or disables the exclusive login feature (SBP-2 related). OFF: Disables. The exclusive login (LOGIN ORB exClusvie it) is ignored. ON: Enables. Exclusive login is in effect.
5839 13*	Login MAX \quad [0~63/8/1], (0 and 63: Reserved)
	Sets the maximum number of logins from the initiator (6-bits)

5840*	IEEE 802.11b		
58404^{*}	SSID	Enter ID	
	Enters a unique ID (up to 32 characters long) to identify the device when it is operating in an area with another wireless LAN network.		
58406^{*}	Channel MAX	JA $[1 \sim 14 / 14 / 1]$ NA $[1 \sim 11 / 11 / 1$ EU $[1 \sim 13 / 13 / 1]$ China, Taiwan (Same as NA)	
	Sets the maximum number of channels available for data transmission via the wireless LAN. The number of channels available varies according to location. The default settings are set for the maximum end of the range for each area. Adjust the upper 4 bits to set the maximum number of channels. Displayed only when the option 802.11b for wireless LAN is installed.		
58407^{*}	Channel MIN JA $[1 \sim 14 / 1 / 1]$ NA $[1 \sim 11 / 1 / 1$ EU $[1 \sim 13 / 1 / 1]$ China, Taiwan (Same as NA)		
	Sets the minimum number of channels available for data transmission via the wireless LAN. The number of channels available varies according to location. The default settings are set for the minimum end of the range for each area. Adjust the lower 4 bits to set the minimum number of channels. Displayed only when the option 802.11b for wireless LAN is installed.		
5840 11*	WEP Key Select	00: Key \#1	00000000
		01: Key \#2 (Reserved)	00000001
		10: Key \#3 (Reserved)	00000010
		11: Key \#4 (Reserved)	00000011
	Selects the WEP key. [00~11 / 00 / 1 binary]		
5840 20*	WEP Mode 0: Max. 64-bit (10 characters) 1: Max. 128-bit (10, 26 characters)		
	Determines the operation mode of the WEP key. Displayed only when the option 801.11b for wireless LAN is installed.		

5842	Net File Analysis
58421^{*}	Specifies the output mode for debugging of each net file process. The 8th bit is reserved. The 7th bit is the switch of debugging output for each module.

5843	Operation Panel Image Exposure $\quad[0:$ Off (disable) $/ 1$: On (enable) $]$
58431^{*}	Enables and disables the operation panel read (dump) feature. After powering on the machine, set this option to 1 to enable this feature. To reset the machine to 0, the machine must be turned off and on again. Selecting 0 for this option without cycling the power off and on does not restore the default setting (0).

5844*	USB	
5844 1*	Transfer Rate	Full Speed / Auto Change
	Sets the speed for USB data transmission. Full Speed: (12 Mbps fixed) Auto Change: $480 \mathrm{Mbps} / 12 \mathrm{Mbps}$ auto adjust	
5844 2*	Vendor ID	[0x0000~0xFFFFF/ 0x05CA /1], DFU
	Sets the vendor ID: Initial Setting: 0x05CA Ricoh Company.	
5844 3*	Product ID	[0x0000~0xFFFF/ 0x0403 /1], DFU
	Sets the product ID.	
5844 4*	Device Release Number	[0000~9999/0100 /1], DFU
	Sets the device release number of the BCD (binary coded decimal) display. Enter as a decimal number. NCS converts the number to hexadecimal number recognized as the BCD.	

5845*	Delivery Server Setting		
	Provides items for delivery server settings.		
5845 1*	FTP Port No. $\quad[0 \sim 65535 / 3670$ / 1]	[0~65535 / 3670 / 1]	
	Sets the FTP port number used when image files to the Scan Router Server.		
5845 2*	IP Address (Primary)	Range: 000.000.000.000 ~ 255.255.255.255	
	Use this SP to set the Scan Router Server address. The IP address under the transfer tab can be referenced by the initial system setting.		
5845 6*	Delivery Error Display Time Netfiles:	[0~999 / 300 / 1]	
	Use this setting to determine the length of time the prompt message is displayed when a test error occurs during document transfer with the NetFile application and an external device.		
5845 8*	IP Address (Secondary)	Range: 000.000.000.000 ~ 255.25	55.255
	Specifies the IP address assigned to the computer designated to function as the secondary delivery server of Scan Router. This SP allows only the setting of the IP address without reference to the DNS setting.		
5845 9*	Delivery Server Model	[0~4/ 0 / 1]	
	Allows changing the model of the delivery server registered by the I/O device. 0: Unknown 1: SG1 Provided 2: SG1 Package 3: SG2 Provided 4: SG2 Package		
5845 10*	Delivery Svr Capability		$\begin{aligned} & {[0 \sim 255 / 0 /} \\ & 1] \end{aligned}$
	Bit7 = 1 Comment information exits		Changes the capability of the registered that the I / O device registered.
	Bit6 = 1 Direct specification of mail address possible		
	Bit5 = 1 Mail RX confirmation setting possible		
	Bit4 = 1 Address book automatic update function exists		
	Bit3 = 1 Fax RX delivery function exists		
	Bit2 = 1 Sender password function exists		
	Bit1 = 1 Function to link MK-1 user and Sender exists		
	Bit0 = 1 Sender specification required (if set to 1, Bit6 is set to "0")		

5846*	UCS Settings	
5846 1*	Machine ID (For Delivery Server)	Displays ID
	Displays the unique device ID in use by the delivery server directory. The value is only displayed and cannot be changed. This ID is created from the NIC MAC or IEEE 1394 EUI. The ID is displayed as either 6 -byle or 8 -byte binary.	
58462^{*}	Machine ID Clear (For Delivery Server) Clears ID $^{\text {a }}$	
	Clears the unique ID of the device used as the name in the file transfer directory. Execute this SP if the connection of the device to the delivery server is unstable. After clearing the ID, the ID will be established again automatically by cycling the machine off and on.	
58463^{*}	Maximum Entries \quad [2000~50000/ 2000 /1]	
	Changes the maximum number of entries that UCS can handle. If a value smaller than the present value is set, the UCS managed data is cleared, and the data (excluding user code information) is displayed.	
58464^{*}	Delivery Server Model 0: Not used, 1:SG1 Provided, 2: SG1 Package, 3: SG2 Provided 4: SG2 Package	
	Changes the model of the transfer server registered for the I/O device.	
58465^{*}	Delivery Server Capability	Bit $7=1$ Comment information Bit $6=1$ Address direct entry possible Bit $5=1$ Mail Rx confirmation possible Bit $4=1$ Address book auto update Bit $3=1$ Fax Rx function $[0 \sim 255 / 0 / 2]$
	Changes the capability of the server registered for the I/O device.	
5846 6*	Delivery Server Retry Timer ${ }^{\text {[0~255/ } 0 / 1]}$	
	Sets the interval for retry attempts when the delivery server fails to acquire the delivery server address book.	
58467^{*}	Delivery Server Retry Times $\quad[0 \sim 255 / 0 / 1]$	
	Sets the number of retry attempts when the delivery server fails to acquire the delivery server address book.	
58468^{*}	Delivery Server Maximum Entries \quad [2000~50000 / 2000 / 1]	
	Sets the maximum number account entries of the delivery server user information managed by UCS.	
5846 50*	Initialize All Directory Info.	Clears all directory information managed by UCS, including all user codes.
5846 51*	Upload All Directory Info.	Uploads all directory information to the IC card.
5846 52*	Download All Directory Info.	Downloads all directory information from the IC card.
5846 80*	Backup FCU	Backs up all directory information to the FCU ROM.
5846 90*	Plain Data Forbidden	Allows you to prevent the address from plain data This is a security function that prevents unauthorized access to address book data. 0: No check. Address book data not protected. 1: Check. Allows operation of UCS without data from SC card and without creating address book information with plain data.
$\begin{array}{\|l\|} \hline \text { SSP } \\ 584699^{*} \\ \hline \end{array}$	Bit SW	Sets UCS debug output. DFU

5849* *	Installation Date	
58491^{*}	Display	DFU
58492^{*}	Switch to Print	DFU

5856	Remote ROM Update	$[0=$ Not allowed / 1 = Allowed]
58561	When set to "1" allows reception of firmware data via the local port (IEEE 1284) during a remote ROM update. This setting is reset to zero after the machine is cycled off and on.	

5857*	Debug Log Save Function
5857 1*	On/Off (1:ON 0:OFF) $\quad \mathbf{0}$: ON, 1: OFF
	Switches the debug log feature on and off. The debug log cannot be captured until this feature is switched on.
58576	Save to SD Card
	Specifies the decimal key number of the log to be written to the SD Card.
585712	Erase Debug Data From SD Card
	Erases all debug logs on the SD Card. If the card contains only debugging files generated by an event specified by SP5858, the files are erased when SP5857 010 or 011 is executed. To enable this SP, the machine must be cycled off and on.
585713	SD Card Space Available
	Displays the amount of space available on the SD card.
585714	SD to SD Latest
	Copies the latest 4 -MB logs to the SD card. The logs are written under the /log directory (this SP does not copy data from the SD card in one slot to the SD card in the other slot). The SP gives a unique name to the file newly saved file. You can save multiple logs from multiple machines in one SD card.
585715	SD to SD Any
	Copies the specified log to the SD card. The logs are written under the /log directory (this SP does not copy data from the SD card in one slot to the SD card in the other slot). This SP copies 4-MB data at the maximum, and gives a unique name to the newly saved file. You can save multiple logs from multiple machines in one SD card.

585717	Make SD Debug File
	Makes a 4-MB file on the SD to save logs. The file stores the contents of key number 2225 of SCS (for example, the information of NV usage in SCS). A file is made in the SD when the first log is saved in the SD even if you do not execute this SP. This processing, however, takes a long time; the user may turn the main switch off and on before completion (the user see no message that indicates the completion of the logging when logs are made on the occurrence of an event). The logging takes a shorter time if you have made a log file beforehand. If you try to make a log file on the SD where another log file has been already made, the contents of key number 2225 is added to the log file in the SD card. In a case like this, a new log file is not made. To make a new log file to supersede an old log file, you must execute SP5-857-012 before executing this SP.

5858^{*}		
	Debug Save When These SPs select the content of the debugging information to be saved to the destination selected by SP5857 002. SP5858 3 stores one SC specified by number. Refer to Section 4 for a list of SC error codes.	
58581^{*}	Engine SC Error	Stores SC codes generated by copier engine errors.
58582^{*}	Controller SC Error	Stores SC codes generated by GW controller errors.
58583^{*}	Any SC Error	$[0 \sim 65535 / 0 / 1]$
58584^{*}	Jam	Stores jam errors.

5859*	Debug Log Save Function	[-9999999~9999999 / 0 / 1]
5859 1*	Key 1	These SPs allow you to set up to 10 keys for log files for functions that use common memory on the controller board.
58592^{*}	Key 2	
58593^{*}	Key 3	
58594^{*}	Key 4	
58595^{*}	Key 5	
5859 6*	Key 6	
58597^{*}	Key 7	
5859 8*	Key 8	
5859 9*	Key 9	
5859 10*	Key 10	

5860^{*}	SMTP/POP3/IMAP4		$[1 \sim 168 / 72 / 1]$
586020^{*}	Partial Mail Receive Timeout		

5869	RAM Disk
58691	Enables or disables the use of the RAM disk.

$\mathbf{5 8 7 0}$	Common Key Info
58701	Common Key Info Writing
	Writes to flash ROM the common proof for validating the device for NRS specifications.
58703	Common Key Info Initialize
	Initializes the area for the key information.

5873	SD Card Application
58731	SD Card Application Transport
	Transports the application programs.
58732	SD Card Application Transport Redo
	Nullifies the processing of SP5-873-1.

$\mathbf{5 9 0 2}$	Test Pattern Print
59021	-5.1 .13

5907^{*}	Plug \& Play Setting
59071	Selects the brand name and production name for the Plug and Play function. These names are registered in the NVRAM. If the NVRAM becomes defective, these names should be re-registered. Use the right-arrow or left-arrow key to scroll through the list of brand names. To select a brand name, press the OK key. An asterisk (*) indicates which manufacture is currently selected. ans

5913	Switchover Permission Time	$[3 \sim 30 / 3 / 1 \mathrm{~s}]$
59132	Sets the amount of time to elapse while the machine is in standby mode (and the operation panel keys have not been used) before another application can gain control of the display.	

5914^{*}	Application Counter Display	$[0=$ Off $/ 1=$ On $]$
59141^{*}	Printer Counter	Selects whether or not these total counters are displayed in
59143^{*}	Copy Counter	the UP mode.

5918^{*}	A3/DLT Counter Display	$[0=$ Off $/ 1=$ On $]$
59181	Sets the key press display for the counter key. This setting has no relation to (SSP) SP5-104 A3/DLT Double Count.	

SSP $\mathbf{5 9 7 0}$	Debug Serial Output DFU	$[0=$ Off $/ 1=$ On $]$
59701	Determines whether the debug information is output by the serial port when the machine is powered on.	

5974^{*}	Cherry Server	$\mathbf{0}$: Lite, 1: Full
56741	Switches writing between the Scan Router Lite application provided and the optional full (Professional) version.	

		SMC Print
59901	All (Data List)	
59902	SP (Mode Data List)	
59903	User Program	
59904	Logging Data	
59905	Diagnostic Report	
59906	Non-Default	
59907	NIB Summary	
599021	Copier User Program	
599022	Scanner SP	
599023	Scanner User Program	

5998	Memory Clear
59981	-5.1 .7

SP6-XXX (Peripherals)

6006	ADF Adjustment (-3.13.3)	
60061	ADF Adjustment (StoS/Front Regist)	[-5.0 ~ +5.0 / 0.0 / $0.1 \mathrm{~mm} / \mathrm{step}$]
	Adjusts the side-to-side registration for the front side of the original, for ADF mode. Use the \because key to select " + " or " - " before entering the value	
60062	ADF Adjustment (Leading Regist)	[-5.0 ~ +5.0 / 0.0 / $0.1 \mathrm{~mm} / \mathrm{step}$]
	Adjusts the leading edge registration for ADF mode. Use the \because key to select "+" or "-" before entering the value.	
60063	ADF Adjustment (Trailing Erase)	[-3.0 ~ +3.0 / -1.0 / $0.1 \mathrm{~mm} / \mathrm{step}]$
	Adjusts the trailing edge erase margin for ADF mode. Use the \because 浪 key to select " + " or "-" before entering the value.	
60064	ADF Adjustment (StoS/Rear Regist)	[-5.0 ~ +5.0 / 0.0 / $0.5 \mathrm{~mm} /$ step]
	Adjusts the side-to-side registration for the rear side of duplex originals, for ADF mode. Use the © key to select " + " or " - " before entering the value.	
60065	ADF Adjustment (Sub-scan Magnif)	[-0.9 ~ +0.9 / 0.0 / 0.1 \%/step]
	Adjust the sub-scan magnification for the ADF.	
60066	ADF Adjustment (Original Curl Adj)	[0 = No / 1 = Yes]
	Enables or disables the skew adjustment for the reverse sides of originals. When you enable SP6-006-6, adjust the distance of the skew adjustment (SP6-006-7).	
60067	ADF Adjustment (Skew Correction)	[-20 ~ +20 / 0 / 1 mm/step]
	Specifies the distance of the skew adjustment. SP6-006-7 is effective when you enable SP6-006-6 (ADF Adjustment [Original Curl Adj]).	

6009	ADF Free Run
60091	Performs an ADF free run. Press "ON" to start; press "OFF" to stop.

$\mathbf{6 0 1 0}$	Stamp Position Adjustment	$[-10 \sim+10 / 0 / 1 \mathrm{~mm} /$ step $]$
60101	Adjusts the stamp position in the sub-scan direction. for the fax mode.	

6901	Display ADF-APS
69011	Displays the status of the ADF original size sensors (5.1.17).

6910	ADF Shading Time	$[0 \sim 60 / 10 / 1$ s/step $]$
69101	Adjusts the interval used for the shading processing in the ADF mode. Light and heat in the room may affect the scanner response. Reduce this setting if copy quality indicates that the white level is drifting during ADF copy jobs.	

SP7-XXX (Data Log)

7001	Total Operation
70011	Displays the total operation time (total drum rotation time).

7401^{*}	Counter-SC Total	$[0 \sim 9999 / 0 / 1 /$ step $]$
74011	Displays how many times SC codes are generated.	

7403^{*}	SC History	
74031	Latest	
74032	Latest 1	
74033	Latesplays the histories of the latest 10 SC codes.	
74034	Latest 3	
74035	Latest 4	
74036	Latest 5	
74037	Latest 6	
74038	Latest 7	
74039	Latest 8	
740310	Latest 9	

7502^{*}	Counter-Paper Jam	$[0 \sim 9999 / 0 / 1 /$ step $]$
75021	Displays the total number of copy paper jams.	

7503^{*}	Counter-Orgn Jam	$[0 \sim 9999 / 0 / 1 /$ step $]$
75031	Displays the total number of original jams,	

7504*	Counter-Each P Jam	
	Displays the total number of the paper jams classified by timing and location.	[0~9999 / 0 / 1/step]
75041	Counter-Each P Jam (At power on)	
	Paper jam occurs at power on.	
750410	Counter-Each P Jam (Off-Regist NoFeed)	
	Paper does not reach the registration sensor (from a paper tray).	
750411	Counter-Each P Jam (Off-1 Vertical SN)	
	Paper does not reach the relay sensor.	
750412	Counter-Each P Jam (On-1 Vertical SN)	
	Paper is caught at the relay sensor.	
750421	Counter-Each P Jam (Off-2 Vertical SN)	
	Paper does not reach the vertical transport sensor.	
750422	Counter-Each P Jam (On-2 Vertical SN)	
	Paper is caught at the vertical transport sensor.	
750431	Counter Each P Jam (Off-3 Vertical SN)	
	Paper does not reach the vertical transport sensor in the optional paper feed unit.	
750432	Counter Each P Jam (On-3 Vertical SN)	
	Paper is caught at the vertical transport sensor in the optional paper feed unit.	
750450	Counter-Each P Jam (Off-Regist Bypass)	
	Paper does not reach the registration sensor (from the by-pass tray).	

750460	Counter-Each P Jam (Off-Regist Duplex)
	Paper does not reach the registration sensor during reverse-side printing (for duplex printing).
750470	Counter-Each P Jam (On-Regist SN)
	Paper is caught at the registration sensor.
7504120	Counter-Each P Jam (On-Exit SN)
	Paper is caught at the exit sensor (previous page).
7504121	Counter-Each P Jam (Off-Exit SN)
	Paper does not reach the exit sensor.
7504122	Counter-Each P Jam (On-Exit SN)
	Paper is caught at the exit sensor.
7504123	Counter-Each P Jam (Off-Dup Inverter)
	Paper does not reach the duplex inverter sensor (from the registration roller).
7504125	Counter-Each P Jam (On-Dup Inverter)
	Paper is caught at the duplex inverter sensor.
7504126	Counter-Each P Jam (Off-Dup Entrance)
	Paper does not reach the duplex entrance sensor.
7504127	Counter-Each P Jam (Off-Dup Entrance)
	Paper is caught at the duplex entrance sensor.
7504128	Counter-Each P Jam (Off-Duplex Exit)
	Paper does not reach the duplex exit sensor.
7504129	Counter-Each P Jam (On-Duplex Exit)
	Paper is caught at the duplex exit sensor.
7504130	Counter-Each P Jam (Off-1 bin Exit SN)
	Paper does not reach the one-bin tray.
7504131	Counter-Each P Jam (On-1 bin Exit SN)
	Paper is caught at the one-bin tray.

7505*	Counter-Each O Jam [0 ~ 9999 / 0 / 1/step]
	Displays the total number of the original jams on the ADF that have occurred at a certain timing or at a certain location.
75051	Counter-Each O Jam (at Power On)
	The original jam occurs during the standby mode.
7505210	Counter-Each O Jam (Off-Regist SN)
	The original does not reach the registration sensor.
7505211	Counter-Each O Jam (On-Regist SN)
	The original is caught at the registration sensor.
7505212	Counter-Each O Jam (Off-Relay SN)
	The original does not reach the exit sensor.
7505213	Counter-Each O Jam (On-Relay SN)
	The original is caught at the exit sensor.
7505214	Counter-Each O Jam (Off-Inverter SN)
	The original does not reach the reverse sensor.
7505215	Counter-Each O Jam (On Inverter SN)
	The original is caught at the reverse sensor.

7506*	Counter-Each P Jam	
	Displays the total number of the paper jams classified by the paper sizes.	[0~9999 / 0 / 1/step]
75065	Counter-Each P Jam (A4 LEF)	
75066	Counter-Each P Jam (A5 LEF)	
750614	Counter-Each P Jam (B5 LEF)	
750638	Counter-Each P Jam (LT LEF)	
750644	Counter-Each P Jam (HLT LEF)	
7506132	Counter-Each P Jam (A3 SEF)	
7506133	Counter-Each P Jam (A4 SEF)	
7506134	Counter-Each P Jam (A5 SEF)	
7506141	Counter-Each P Jam (B4 SEF)	
7506142	Counter-Each P Jam (B5 SEF)	
7506160	Counter-Each P Jam (DLT SEF)	
7506164	Counter-Each P Jam (LG SEF)	
7506166	Counter-Each P Jam (LT SEF)	
7506172	Counter-Each P Jam (HLT SEF)	
7506255	Counter-Each P Jam (Other)	

7507*	Dsply-P Jam Hist									
75071	Displays the latest 10 paper-jam history. The list below shows the possible 22 codes:									
	1	10	11	12	21	22	31	32	50	60
	70	120	121	122	123	125	126	127	128	129
	130	131								
	The codes correspond to the menus of SP7-504. For example, the code 1 corresponds to SP7-504-1, and the code 10 corresponds to SP7-504-10.									

7508^{*}	Dsply-O Jam Hist		
75081	Displays the total number of the original-jams history. The list below shows the		
	possible seven codes:		
	$210 \quad 211 \quad 212 \quad 213 \quad 214 \quad 215$		The codes correspond to the menus of SP7-505. For example, the code 210
:---			
corresponds to SP7-505-210, and the code 211 corresponds to SP7-505-211.	\quad		
:---			

7801	Memory/Version/PN
7801255	Memory/Version (ADF ROM)
	Displays the serial number and the version of the BICU and the serial number and version of the ADF software.

7803^{*}	Display-PM Count
78031	Displays the PM counter.

7804	Reset-PM Counter
78041	Resets the PM counter (SP7-803-1). When the program ends normally, the message "Completed" is displayed.

7807	Reset-SC/Jam Counters
78071	Resets the SC, paper, original, and total jam counters. When the program ends normally, the message "Completed" is displayed. SP7-807-1 does not reset the following logs: SP7-507 (Display-Paper Jam History) and SP7-508 (Display-Original Jam History).

7808	Reset-Counters
78081	Resets all counters except for the management counters. The management counters are the counters that are not changed by NVRAM Download (SP5-825-1; - NVRAM Download (SP5-825-1) in section 5.1.11). When the program ends normally, the message the message "Completed" is displayed.

7810	Reset-Key Op Code
7810 1	Resets the key operator code. Use SP7-810-1 when the customer has forgotten the key-operator code. When the program ends normally, the message "Completed" is displayed, if the program ends abnormally, an error message is displayed. If the customer forgets the key operator code. To specify a new key-operator code, use the User Tools: System Settings \rightarrow Key Operator Tools \rightarrow Key Operator Code \rightarrow On \rightarrow Enter Key Operator Code.

7826^{*}	MF Device Error Count	For Japan Only
7827	MF Device Error Count Clear	For Japan Only

7832^{*}	Display-Self-Diag
78321	Displays the SC codes found during the self-diagnostics test, and the number of their occurrences. Each number is in the range of 0 to 9999.

7901*	Assert Info. DFU	
	These SP numbers display the results of the occurrence of the most recent SC code generated by the machine.	
7901 1*	Source File Name	Module name
79012^{*}	Line Number	Number of lines
7901 3*	Result	Value

7991	Dsply-Info Count
	Displays the total operating time or the total number of operations. The time is displayed in the following format: day:hour:minute:second.
	Dsply-Info Count (Dsply-APS Working)
	The total of the time when the APS is working.
79913	Dsply-Info Count (Dsply-ID S Work)
	The total of the time when the ID sensor is working.
79914	Dsply-Info Count (Dsply-Dev Counter)
	The total number of paper outputs.
	Dsply-Info Count (Dsply-ID Er Count)
	The total number of ID-sensor errors.

7992	Reset-Info Count
79925	Reset-Info Count (Reset-ID Er Count)
	Clears the counter of SP7-991-5.

SP8-XXX (History)

8191* *	T: Total Scan PGS	$[0 \sim 9999999 / 0 / 1$ sheet/step]
81911	Displays the total number of scanned originals. The both sides are counted when the front and reverse sides of an original (fed from the ADF) are scanned.	

8192* *	C: Total Scan PGS	$[0 \sim 9999999 / 0 / 1$ sheet/step]
81921	Displays the total number of scanned originals. The both sides are counted when the front and reverse sides of an original (fed from the ADF) are scanned.	

$\mathbf{8 1 9 3}^{*}$	F: Total Scan PGS	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
81931	Displays the total number of scanned originals. The both sides are counted when the front and reverse sides of an original (fed from the ADF) are scanned.	

8195* *	S: Total Scan PGS	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
81951	Displays the total number of scanned originals. The both sides are counted when the front and reverse sides of an original (fed from the ADF) are scanned.	

8201* 2011	T: L Size Scan PGS	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
	Displays the total number of scanned originals (by copying jobs and scanning jobs) classified by paper size. The following size is counted: A3/DLT and larger.	

8205*	S: L Size Scan PGS (A3/DLT, Larger)	$[0 \sim 9999999 / 0 / 1$ sheet/step]
82051	Displays the total number of scanned originals (by scanning jobs) classified by paper size. The following size is counted: A3/DLT and larger.	

$\mathbf{8 2 2 1}^{*} 82211$		ADF Org Feed
	ADF Org Feed (Front)	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
	Displays the total number of scanned front sides of originals fed from the ADF.	
	ADF Org Feed (Back)	Displays the total number of scanned reverse sides of originals fed from the ADF.

8291* *	T: Scan PGS/TWAIN	$[0 \sim 9999999 / 0 / 1$ sheet/step]
82911	Displays the total number of sheets stamped by the ADF in fax jobs and scanning jobs.	

8293^{*}	F: Scan PGS/TWAIN	$[0 \sim 9999999 / 0 / 1$ sheet/step]
82931	Displays the total number of sheets stamped by the ADF in fax jobs.	

8295*	S: Scan PGS/TWAIN	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
82951	Displays the total number of sheets stamped by the ADF in scanning jobs.	

8301^{*}	T: Scan PGS/Size
	Displays the total number of pages scanned by all application programs.
83011	A3
83012	A4
83013	A5
83014	B4
83015	B5
83016	DLT
83017	LG
83018	LT
83019	HLT
830110	Full Bleed
8301254	Other (Standard)
8301255	Other (Custom)

8302^{*}	Counter-Paper Size	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
	Displays the total number of pages scanned by the copier application program.	
83021	A3	
83022	A4	
83023	A5	
83024	B4	
83025	B5	
83026	DLT	
83027	LG	
83028	LT	
83029	HLT	
830110	Full Bleed	
8302254	Other (standard size)	
8302255	Other (custom size)	

88303^{*}	T: Scan PGS/Size	$[0 \sim 9999999 / 0 / 1$ sheet/step]
	Displays the total number of pages scanned by the fax application program.	
83031	A3	
83032	A4	
83033	A5	
83034	B4	
83035	B5	
83036	DLT	
83037	LG	
83038	LT	
83039	HLT	
830110	Full Bleed	
8303254	Other (Standard)	
8303255	Other (Custom)	

8305^{*}	T: Scan PGS/Size
	Displays the total number of pages scanned by all application programs.
83051	A3
83052	A4
83053	A5
83054	B4
83055	B5
83056	DLT
83057	LG
83058	LT
83059	HLT
830110	Full Bleed
8305254	Other (Standard)
8305255	Other (Custom)

8381* *	T: Total Prt PGS	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
83811	Displays the print count of all application programs.	

8382^{*}	C: Total Prt PGS	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
83821	Displays the print count of the copier application program.	

8383* *	F: Total Prt PGS	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
83831	Displays the print count of the fax application program.	

8384^{*}	P: Total Prt PGS	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
83841	Displays the print count of the printer application program.	

8385^{*}	S: Total Prt PGS	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
83851	Displays the print count of the scanner application program.	

8387^{*}	O: Total Prt PGS	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
83871	Displays the print count of application programs other than copier, fax, printer, or scanner programs (such as external application programs).	

8391* *	L size Prt PGS (A3/DLT, Larger)	[0~9999999 / 0 / 1 sheet/step]
83911	Displays the print count of the AS/DLT size and larger paper.	

8411* *	Prints/Duplex	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
84111	Displays the total count of the duplex printing.	

8421*	T: PrtPGS/Dup Comb	[0 ~ 9999999 / 0 / 1 sheet/step]
	Displays the total number of pages processed for printing. This is the total for all application programs.	
84211	Simplex > Duplex	
84212	Duplex > Duplex	
84213	Book > Duplex	
84214	Simplex Combine	
84215	Duplex Combine	
84216	$2>$	
84217	$4>$	
84218	$6>$	
84219	$8>$	
842110	$9>$	
842111	16 >	
842112	Booklet	
842113	Magazine	

8422^{*}	C: PrtPGS/Dup Comb	$[0 \sim 9999999 / 0 / 1$ sheet/step]
	Displays the total number of pages processed for printing by the copier application program.	
84221	Simplex > Duplex	
84222	Duplex > Duplex	
84223	Book > Duplex	
84224	Simplex Combine	
84225	Duplex Combine	
84226	$2>$	
84227	$4>$	
84228	$6>$	
84229	$8>$	
842210	$9>$	
842211	$16>$	
842212	Booklet	
842213	Magazine	

8423^{*}	F: PrtPGS/Dup Comb
	Displays the total number of pages processed for printing by the fax application program.
84231	Simplex > Duplex
84232	Duplex > Duplex
84233	Book > Duplex
84234	Simplex Combine
84235	Duplex Combine
84236	$2>$
84237	$4>$
84238	$6>$
84239	$8>$
842310	$9>$
842311	$16>$

842312	Booklet
842313	Magazine

8424*	P: PrtPGS/Dup Comb	[0 ~ 99999999 / 0 / 1 sheet/step]
	Displays the total number of pages processed for printing by the printer application program.	
84241	Simplex > Duplex	
84242	Duplex > Duplex	
84243	Book > Duplex	
84244	Simplex Combine	
84245	Duplex Combine	
84246	$2>$	
84247	$4>$	
84248	$6>$	
84249	$8>$	
842410	$9>$	
842411	$16>$	
842412	Booklet	
842413	Magazine	

8425^{*}	S: PrtPGS/Dup Comb	$[0 \sim 9999999 / 0 / 1$ sheet/step]
	Displays the total number of pages processed for printing by the scanner	
application program.		

8427^{*}	O: PrtPGS/Dup Comb	$[0 \sim 9999999 / 0 / 1$ sheet/step]
	Displays the total number of pages processed for printing by other application programs.	
84271	Simplex > Duplex	
84272	Duplex > Duplex	
84273	Book > Duplex	
84274	Simplex Combine	
84275	Duplex Combine	
84276	$2>$	
84277	$4>$	
84278	$6>$	
84279	$8>$	

842710	$9>$
842711	$16>$
842712	Booklet
842713	Magazine

8441^{*}	T: PrtPGS/Ppr Size
	Displays the total print count classified by paper size. This is the total for all application programs.
84411	T: PrtPGS/Ppr Size (A3)
84412	T: PrtPGS/Ppr Size (A4)
84413	T: PrtPGS/Ppr Size (A5)
84414	T: PrtPGS/Ppr Size (B4)
84415	T: PrtPGS/Ppr Size (B5)
84416	T: PrtPGS/Ppr Size (DLT)
84417	T: PrtPGS/Ppr Size (LG)
84418	T: PrtPGS/Ppr Size (LT)
84419	T: PrtPGS/Ppr Size (HLT)
844110	T: PrtPGS/Ppr SIze (Full Bleed)
8441254	T: PrtPGS/Ppr Size (Other (Standard))
8441255	T: PrtPGS/Ppr Size (Other (Custom))

8442^{*}	C: PrtPGS/Ppr Size
	Displays the number of pages printed by the copier application program.
84421	C: PrtPGS/Ppr Size (A3)
84422	C: PrtPGS/Ppr Size (A4)
84423	C: PrtPGS/Ppr Size (A5)
84424	C: PrtPGS/Ppr Size (B4)
84425	C: PrtPGS/Ppr Size (B5)
84426	C: PrtPGS/Ppr Size (DLT)
84427	C: PrtPGS/Ppr Size (LG)
84428	C: PrtPGS/Ppr Size (LT)
84429	C: PrtPGS/Ppr Size (HLT)
844210	C: PrtPGS/Ppr Slze (Full Bleed)
8442254	C: PrtPGS/Ppr Size (Other (Standard))
8442255	C: PrtPGS/Ppr Size (Other (Custom))

8443^{*}	F: PrtPGS/Ppr Size	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
	Displays the number of pages printed by the fax application program.	
84431	F: PrtPGS/Ppr Size (A3)	
84432	F: PrtPGS/Ppr Size (A4)	
84433	F: PrtPGS/Ppr Size (A5)	
84434	F: PrtPGS/Ppr Size (B4)	
84435	F: PrtPGS/Ppr Size (B5)	
84436	F: PrtPGS/Ppr Size (DLT)	
84437	F: PrtPGS/Ppr Size (LG)	
84438	F: PrtPGS/Ppr Size (LT)	
84439	F: PrtPGS/Ppr Size (HLT)	
844310	F: PrtPGS/Ppr Slze (Full Bleed)	
8443254	F: PrtPGS/Ppr Size (Other (Standard))	

8444^{*}	P: PrtPGS/Ppr Size	$[0 \sim 9999999 / 0 / 1$ sheet/step]
	Displays the number of pages printed by the printer application program.	
84441	P: PrtPGS/Ppr Size (A3)	
84442	P: PrtPGS/Ppr Size (A4)	
84443	P: PrtPGS/Ppr Size (A5)	
84444	P: PrtPGS/Ppr Size (B4)	
84445	P: PrtPGS/Ppr Size (B5)	
84446	P: PrtPGS/Ppr Size (DLT)	
84447	P: PrtPGS/Ppr Size (LG)	
84448	P: PrtPGS/Ppr Size (LT)	
84449	P: PrtPGS/Ppr Size (HLT)	
844410	P: PrtPGS/Ppr Slze (Full Bleed)	
8444254	P: PrtPGS/Ppr Size (Other (Standard))	
8444255	P: PrtPGS/Ppr Size (Other (Custom))	

8445^{*}	S: PrtPGS/Ppr Size
	Displays the number of pages printed by the scanner application program.
84451	S: PrtPGS/Ppr Size (A3)
84452	S: PrtPGS/Ppr Size (A4)
84453	S: PrtPGS/Ppr Size (A5)
84454	S: PrtPGS/Ppr Size (B4)
84455	S: PrtPGS/Ppr Size (B5)
84456	S: PrtPGS/Ppr Size (DLT)
84457	S: PrtPGS/Ppr Size (LG)
84458	S: PrtPGS/Ppr Size (LT)
84459	S: PrtPGS/Ppr Size (HLT)
844510	S: PrtPGS/Ppr Slze (Full Bleed)
8445254	S: PrtPGS/Ppr Size (Other (Standard))
8445255	S: PrtPGS/Ppr Size (Other (Custom))

8447^{*}	O: PrtPGS/Ppr Size	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
	Displays the number of pages printed by the scanner application program.	
84471	O: PrtPGS/Ppr Size (A3)	
84472	O: PrtPGS/Ppr Size (A4)	
84473	O: PrtPGS/Ppr Size (A5)	
84474	O: PrtPGS/Ppr Size (B4)	
84475	O: PrtPGS/Ppr Size (B5)	
84476	O: PrtPGS/Ppr Size (DLT)	
84477	O: PrtPGS/Ppr Size (LG)	
84478	O: PrtPGS/Ppr Size (LT)	
84479	O: PrtPGS/Ppr Size (HLT)	
844710	O: PrtPGS/Ppr Slze (Full Bleed)	
8447254	O: PrtPGS/Ppr Size (Other (Standard))	
8447255	O: PrtPGS/Ppr Size (Other (Custom))	

8451*	C: PrtPGS/Ppr Tray	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
	Displays the total print count classified by paper source.	
84511	C: PrtPGS/Ppr Tray (Bypass Tray)	
84512	C: PrtPGS/Ppr Size (Tray 1)	
84513	C: PrtPGS/Ppr Size (Tray 2)	
84514	C: PrtPGS/Ppr Size (Tray 3)	
84515	C: PrtPGS/Ppr Size (Tray 4)	

	T: PrtPGS/Ppr Type
	Displays the total print count classified by paper size. This is the total for all application programs.
84611	Normal
84612	Recycled
84613	Special
84614	Thick
84615	Normal (Back)
84616	Thick (Back)
84617	OHP
84618	Other

	C: PrtPGS/Ppr Type	$[0 \sim 9999999 / 0 / 1$ sheet/step]
	Displays the total number of pages printed by the copier application program.	
84621	Normal	
84622	Recycled	
84623	Special	
84624	Thick	
84625	Normal (Back)	
84626	Thick (Back)	
84627	OHP	
84628	Other	

$\mathbf{8 4 6 3}^{*}$	F: PrtPGS/Ppr Type
	Displays the total number of pages printed by the fax application program.
84631	Normal
84632	Recycled
84633	Special
84634	Thick
84635	Normal (Back)
84636	Thick (Back)
84637	OHP
84638	Other

	P: PrtPGS/Ppr Type	$[0 \sim 9999999 / 0 / 1$ sheet/step $]$
	Displays the total number of pages printed by the fax application program.	
84641	Normal	
84642	Recycled	

84643	Special
84644	Thick
84645	Normal (Back)
84646	Thick (Back)
84647	OHP
84648	Other

	T:PrtPGS/FIN
	These SPs count by finishing mode the total number of pages printed by all applications.
85211	Sort
85212	Stack
85213	Staple
85214	Booklet
85215	Z-Fold
85216	Punch
85217	Other

	C:PrtPGS/FIN
	These SPs count by finishing mode the total number of pages printed by the Copy application.
85221	Sort
85222	Stack
85223	Staple
85224	Booklet
85225	Z-Fold
85226	Punch
85227	Other

	F:PrtPGS/FIN
	These SPs count by finishing mode the total number of pages printed by the Fax application. Note: \bullet
	Sort
85232	Stack finishing options for received faxes are currently not available.
85233	Staple
85234	Booklet
85235	Z-Fold
85236	Punch
85237	Other

	P:PrtPGS/FIN	$[0 \sim 9999999 / 0 / 1]$
	These SPs count by finishing mode the total number of pages printed by the Print application.	
	Sort	
85242	Stack	

85243	Staple
85244	Booklet
85245	Z-Fold
85246	Punch
85247	Other

	S:PrtPGS/FIN
	These SPs count by finishing mode the total number of pages printed by the Scanner application.
85251	Sort
85252	Stack
85253	Staple
85254	Booklet
85255	Z-Fold
85256	Punch
85257	Other

8771	Dev Counter	$[0 \sim 9999999 / 0 / 1]$
87711	Counts the frequency of use (number of rotations of the development rollers) for black and other color toners. Note: For machines that do not support color, the Black toner count is the same as the Total count.	

8801	Toner Remain	$[0 \sim 100 / 0 / 1]$
88011	This SP displays the percent of toner remaining for each color. This SP allows the user to check the toner supply at any time. Note:	

Note:

- This precise method of measuring remaining toner supply (1\% steps) is better than other machines in the market that can only measure in increments of 10 (10\% steps).
- This SP is expanded for color MFP and color LP machines. For this machine, the count is done for black only.

	Machine Status
	Displays the total operating time classified by machine status. The time is displayed in the following format: day:hour:minute:second.
	Operation Time
	The total time when the engine is operating.
89412	Standby Time
	The total time when the machine is in the standby mode.
89413	Energy Save Time
	The total time when the machine is in the energy saver mode.
89415	Low Power Time
	The total time when the machine is in the low power mode.
89416	Off Mode Time
	The total time when the machine is executing background printing.
	Down Time/SC
	The total waiting time due to SC occurrences.

889417	Down Time/Print Jam
	The total waiting time due to printing-paper jams.
	Down Time/Original Jam
	The total waiting time due to original jams.
89419	Down Time/Toner End
	The total waiting time due to toner ends.

SP9-XXX (Etc.)

9801*	DCS Debug	
98011	Common	Specifies the DCS debug output format. bit 0: Time (Time is added on each line of logs) bit 1: Millisecond (Millisecond is added to time.) bit 2: Colored (Text and background is colored.) bit 3: Return code (The return code is added at line ends.) bit 4: Indentation (Text data is indented.) bit 5: Not used bit 6: Not used bit 7: Not used
98012	IFC	Specifies the DCS IFC module debug output. bit 0: Client event transfer log bit 1: UCS event transfer log bit 2: DCS internal event (inter-module event in DCS) transfer log bit 3: Parameter data bit 4: Process flow log bit 5: Detailed process flow log bit 6: Not used bit 7: Not used
98013	SMM	Specifies the DCS SMM module debug output. bit 0: SCS event transfer log bit 1: DCS internal event (inter-module event in DCS) transfer log bit 2: Parameter data bit 3: Process flow log bit 4: Detailed process flow log bit 5: SP read-/write-related event transfer log bit 6 SP read-/write-related event parameter log bit 7: Not used
98014	SJM/RJM	Specifies the DCS SJM/RJM module debug output. bit 0: SJM: IFC/DSS event transfer log bit 1: SJM: Parameter data bit 2: SJM: Process flow log bit 3: SJM: Detailed process flow log bit 4: SJM: MCS event (RPC) log bit 5: RJM: Event transfer log bit 6: RJM: Parameter data bit 7: RJM: Process flow check
98015	DSS	Specifies the DCS DSS module debug output. bit 0: DCS internal event (inter-module event in DCS) transfer log bit 1: MCS/NAS (internal module) event log bit 2: Parameter data bit 3: Time check bit 4: Process flow check log bit 5: Error check bit 6: Initial values bit 7: Temporary check

98016	MRS	Specifies the DCS MRS module debug output. bit 0: DCS internal event (inter-module event in DCS) transfer log bit 1: NCS library call log bit 2: Event transfer in the internal thread for NCS bit 3. Not used bit 4: Not used bit 5: Process flow check log bit 6: Detailed process flow check log bit 7: Not used
98017		NAS
	Specifies the DCS NAS module debug output. bit 0: Parameter data bit 1: DCS internal event (inter-module event in DCS) transfer log bit 2: NCS (general) library call log bit 3. NCS (SMB client) library call log bit 4: NCS (FTP client) library call log bit 5: NCS (SMTP client) library call log bit 6: Time check bit 7: Not used	

5.1.4 ADJUSTING REGISTRATION AND MAGNIFICATION

To adjust the registration and magnification, you need to use several service programs. The chart shows an example of the procedure to adjust the machine in the basic configuration.

5.1.5 ID SENSOR ERROR ANALYSIS (SP2-221)

The image quality may become very bad when the ID sensor does not operate properly. However, there is no such SC code that indicates ID-sensor malfunction; instead, SP2-221 shows you some information on the ID sensor. Check this information when the image quality is not very good.

The table lists the information shown with SP2-221 (ID Sensor Error Analysis).

SP	Error condition	Possible cause	Remarks
SP2-221-1 Vsg (VG in the display)	$\begin{aligned} & \mathrm{Vsg}<2.5 \mathrm{~V} \text { or } \\ & (\mathrm{Vsg}-\mathrm{Vsp})<1.00 \mathrm{~V} \end{aligned}$	- ID sensor defective - ID sensor dirty - Drum not charged	
SP2-221-2 Vsp (VP in the display)	$\begin{aligned} & \text { Vsp }>2.5 \mathrm{~V} \text { or } \\ & (\mathrm{Vsg}-\mathrm{Vsp})<1.00 \mathrm{~V} \end{aligned}$	- Toner density very low - ID sensor pattern not created	
SP2-221-3 Power (PW in the display)	$\mathrm{Vsg}<3.5 \mathrm{~V}$ when maximum power (979) is applied	- ID sensor defective - ID sensor dirty - Drum not get charged	Power source for the IDsensor light
SP2-221-4 Vsdp	No Error Conditions		
SP2-221-5 Vt	$\begin{aligned} & \mathrm{Vt}>4.5 \mathrm{~V} \text { or } \\ & \mathrm{Vt}<0.2 \mathrm{~V} \end{aligned}$	- TD sensor defective	
SP2-221-6 Vts			

5.1.6 DISPLAY APS DATA (SP4-301-1)

Sensor Positions

The APS (auto paper select) sensors are arranged as shown in the diagram.

B121S919.WMF

Reading the Data

Paper Size $: 1100000081 / 2 \times 13 \square$
DF Open $: 1$

Example 1

Paper Size : 00110000 A4 D
DF Open : 0
Example 2

Example 1 indicates that the paper size and its orientation is " $81 / 2 \times 13$ SEF," and that the document feeder (or platen cover) is open. Example 2 indicates that the paper size and its orientation is "A4 LEF," and that the document feeder (or platen cover) is closed.

The "Paper Size" data starts with eight digits. The first digit indicates the output of L2; the second digit, L1; the third digit, W2; and the fourth digit, W1. The other four digits (from the fifth through the eighth) are always "0000." In Example 1, the APS sensors L2 and L1 detect paper (W2 and W1 do not). In Example 2, APS sensors W2 and W1 detect paper (L2 and L1 do not). The paper size and its orientation is based on the outputs of these four APS sensors.

The "DF Open" data shows "1" or "0," indicating if the document feeder (or platen cover) is open or closed respectively. The data is based on the output of the platen cover sensor $[A]$.

5.1.7 MEMORY CLEAR

Basic Machine and MFP Machine

The basic machine (the machine without the optional controller box) stores all the data in the NVRAM on the BICU. The data is cleared by SP5-801-002 (for exceptions, see "Exceptions").

The MFP machine (the machine with the optional controller box) stores the engine data in the NVRAM on the BICU, and stores the other data in the NVRAM on the optional controller. To distinguish between the engine data and the other data, see SP5-801-003 through 015. This service program (SP5-801) handles the controller data. Any data that is not handled by SP5-801 is the engine data. The data in the BICU NVRAM (engine data) is cleared by SP5-998-001 while the data in the controller NVRAM (controller data) is cleared by SP5-801-xxx (for exceptions, see "Exceptions").

Machine	Data	NVRAM	Cleared by	Remarks
Basic	All data	BICU	SP5-801-002	
	Engine data	BICU	SP5-998-001	Any data other than controller data
MFP	Controller data	Controller	SP5-801-xxx	SCS, IMH, MCS, Copier application, Fax application, Printer application, Scanner application, Web service/network application, NCS, RFax, DCS, UCS

Exceptions

SP5-801-002 (basic machine) and SP5-998-001 (MFP machine) clears most of the settings and counters stored in the NVRAM on the BICU (the values return to their default values). However, the following settings are not cleared:

- SP5-807 (Area Selection)
- SP5-811-001 (Serial Num Input [Code Set])
- SP5-811-003 (Serial Num Input [ID2 Code Display])
- SP5-812-001 (Service TEL [Telephone])
- SP5-812-002 (Service TEL [Facsimile])
- SP5-907 (Plug \& Play)
- SP7 (Data Log)
- SP8 (History)

Use SP5-802-002 (basic machine) or SP5-998-001 (MFP machine) after you have replaced the BICU NVRAM or when the BICU NVRAM data is corrupted. When the program ends normally, the message "Completed" is displayed. When you have replaced the controller NVRAM or when the controller NVRAM data is corrupted, use SP5-801-001. The message is the same as the basic machine.

With Flash Memory Card (Basic Machine Only)

1. Upload the NVRAM data to a flash memory card (5.1.11).
2. Print out all SMC data lists (-5.1 .15).

NOTE: Be sure to print out all the lists. You have to manually change the SP settings if the NVRAM data upload ends abnormally.
3. Select SP5-801-002.
4. Press the OK key.
5. Select "Execute." The messages "Execute?" followed by "Cancel" and "Execute" are displayed.
6. Select "Execute."
7. When the program has ended normally, the message "Completed" is displayed. If the program has ended abnormally, an error message is displayed.
8. Press the cancel key.
9. Turn the main switch off and on.
10. Download the NVRAM data from a flash memory card (-5.1.11).

Without Flash Memory Card

1. Print out all SMC data lists (-5.1 .15).
2. Select SP5-801-002 (basic machine) or SP5-998-001 (MFP machine).
3. Press the OK key.
4. Select "Execute." The messages "Execute?" followed by "Cancel" and "Execute" are displayed.
5. Select "Execute."
6. When the program has ended normally, the message "Completed" is displayed. If the program has ended abnormally, an error message is displayed.
7. Turn the main switch off and on.
8. Adjust the printer and scanner registration and magnification (Copy Adjustment" in chapter 3, "Replacement and Adjustment").
9. Refer to the SMC lists, and enter any values that differ from the factory settings. Double-check the values for SP4-901.
10. Adjust the standard white level (SP4-428).
11. Initialize the TD sensor (SP 2-214).
12. Check the copy quality and the paper path.

5.1.8 INPUT CHECK (SP5-803)

Conducting an Input Check

1. Select SP5-803.
2. Select the number (see the table below) corresponding to the component.
3. Select "Execute." The copy mode is activated.
4. The sign " 01 H " or " 00 H " is displayed (see the table below).

Input Check Table

Num.	Sensor/Switch	01H	00H
001	Safety SW	Open	Closed
002	Safety SW-LD 5V	Open	Closed
003	Right Cover SW	Open	Closed
004	Right Low Cover SW	Open	Closed
005	Tray Cover SW	Open	Closed
006	Upper Relay S	Paper detected	Not detected
007	Lower Relay S	Paper detected	Not detected
008	Vertical Trans S	Paper detected	Not detected
009	Registration Sensor	Paper detected	Not detected
010	Exit Sensor	Paper detected	Not detected
011	Duplex Inverter S	Paper detected	Not detected
012	Duplex Entrance S	Paper detected	Not detected
013	Duplex Exit S	Paper detected	Not detected
014	By-pass PE S	Paper detected	Not detected
015	By-pass P Size S	*1	
016	Upper PE S	Paper detected	Not detected
017	Lower PE S	Paper detected	Not detected
018	Upper P Size SW	*1	
019	Lower P Size SW	*1	
020	BK-Upper Paper End S	Paper detected	Not detected
021	BK-Lower Paper End S	Paper detected	Not detected
022	BK-Up P Size SW	*1	
023	BK-Low P Size SW	*1	
024	BK-Up P Height S	*2	
025	BK-Low P Height S	*2	
026	BK-Upper Lift S	At upper limit	Not at upper limit
028	BK type	*3	
030	Duplex Installed	Installed	Not installed
031	Lower Lift S	At upper limit	Not at upper limit
032	Main M Lock	Locked	Not locked
033	Polygon M Lock	Locked	Not locked
034	BK-Lift M Lock	Locked	Not locked
035	Total CO Install	Installed	Not installed
036	Key CO Install	Installed	Not installed
037	L-Synchronization	Detected	Not detected
038	DF-Position S	Detected	Not detected
039	DF-Cover Open S	Detected	Not detected
040	DF-Original Set S	Detected	Not detected

Num.	Sensor/Switch	$\mathbf{0 1 H}$	$\mathbf{0 0 H}$
041	DF-Registration S	Detected	Not detected
042	DF-Exit S	Detected	Not detected
043	DF-Trailing S	Detected	Not detected
044	DF-Reverse S	Detected	Not detected
045	Platen Cover S	Open	Closed
046	1 bin Installed	Installed	Not installed
047	1 bin Exit S	Paper detected	Not detected
048	1 bin Paper S	Paper detected	Not detected
049	1 bin Tray S	Open	Closed
050	Fan Motor Lock	High speed	Not high speed
051	2 Tray BK Install	Installed	Not installed
053	HP Sensor	Detected	Not detected
054	Duplex Fan M Lock	Locked	Not locked

*1 Paper Size

Copier	00	01	02	03	04	05	06	07	
Europe	Not set	$\begin{gathered} \text { A4 } \\ \text { LEF } \end{gathered}$	$\begin{gathered} 8 \mathrm{Hx13} \\ \text { SEF } \end{gathered}$	$\begin{gathered} \text { A4 } \\ \text { SEF } \end{gathered}$	A5	$\begin{gathered} \mathrm{LT} \\ \mathrm{LEF} \end{gathered}$	-	$\begin{gathered} \text { A3 } \\ \text { SEF } \end{gathered}$	
North America	Not set	$\begin{gathered} \mathrm{A} 4 \\ \mathrm{LEF} \end{gathered}$	$\begin{gathered} 8 \mathrm{H} \times 13 \\ \mathrm{SEF} \end{gathered}$	$\begin{gathered} \mathrm{LT} \\ \mathrm{SEF} \end{gathered}$	$\begin{gathered} \mathrm{LG} \\ \mathrm{SEF} \end{gathered}$	$\begin{gathered} \hline \mathrm{LT} \\ \mathrm{LEF} \end{gathered}$	-	$\begin{aligned} & \hline \text { DLT } \\ & \text { SEF } \end{aligned}$	
China	Not set	$\begin{gathered} \hline \mathrm{A} 4 \\ \mathrm{LEF} \end{gathered}$	$\begin{gathered} \mathrm{B} 5 \\ \text { LEF } \end{gathered}$	$\begin{gathered} \hline \text { A4 } \\ \text { SEF } \end{gathered}$	$\begin{gathered} \text { A5 } \\ \text { LEF } \end{gathered}$	$\begin{gathered} \hline \text { B4 } \\ \text { SEF } \end{gathered}$	-	$\begin{gathered} \text { A3 } \\ \text { SEF } \end{gathered}$	
Paper Feed Unit	00	01	03	04	05	0A	0C	OE	OF
Europe	Not set	$\begin{gathered} \mathrm{LT} \\ \mathrm{SEF} \end{gathered}$	$\begin{aligned} & \text { LG } \\ & \text { SEF } \end{aligned}$	$\begin{gathered} \mathrm{A} 4 \\ \mathrm{LEF} \end{gathered}$	-	$\begin{aligned} & \text { DLT } \\ & \text { SEF } \end{aligned}$	$\begin{gathered} \text { A4 } \\ \text { SEF } \end{gathered}$	$\begin{gathered} \mathrm{LT} \\ \mathrm{LEF} \end{gathered}$	$\begin{gathered} \hline \text { A3 } \\ \text { SEF } \end{gathered}$
North America	Not set	$\begin{gathered} \mathrm{LT} \\ \mathrm{SEF} \end{gathered}$	$\begin{aligned} & \text { LG } \\ & \mathrm{SEFF} \end{aligned}$	$\begin{gathered} \text { A4 } \\ \text { LEF } \end{gathered}$	-	$\begin{aligned} & \text { DLT } \\ & \text { SEF } \end{aligned}$	$\begin{gathered} \text { A4 } \\ \text { SEF } \end{gathered}$	$\begin{gathered} \mathrm{LT} \\ \mathrm{LEF} \end{gathered}$	$\begin{gathered} \hline \text { A3 } \\ \text { SEF } \end{gathered}$
China	Not set	$\begin{gathered} \mathrm{LT} \\ \mathrm{SEF} \end{gathered}$	$\begin{aligned} & \text { LG } \\ & \mathrm{SEFF} \end{aligned}$	$\begin{gathered} \mathrm{A} 4 \\ \mathrm{LEF} \end{gathered}$	-	$\begin{aligned} & \text { DLT } \\ & \text { SEF } \end{aligned}$	$\begin{gathered} \text { A4 } \\ \text { SEF } \end{gathered}$	$\begin{gathered} \mathrm{LT} \\ \mathrm{LEF} \end{gathered}$	$\begin{gathered} \text { A3 } \\ \text { SEF } \end{gathered}$
$\begin{gathered} \hline \hline \text { By-Pass } \\ \text { Tray } \end{gathered}$	04	OC	08	00	01	03	02	06	
Europe	$\begin{gathered} \text { A5 } \\ \text { SEF } \end{gathered}$	$\begin{gathered} \hline \text { A5 } \\ \text { SEF } \end{gathered}$	$\begin{gathered} \hline \text { A5 } \\ \text { SEF } \end{gathered}$	$\begin{gathered} \hline \text { A5 } \\ \text { SEF } \end{gathered}$	$\begin{aligned} & \hline 8 \times 13 \\ & \text { SEF } \end{aligned}$	$\begin{gathered} \mathrm{A} 4 \\ \mathrm{SEF} \end{gathered}$	$\begin{gathered} \hline \text { A3 } \\ \text { SFF } \end{gathered}$	$\begin{gathered} \hline \text { A3 } \\ \text { SEF } \end{gathered}$	
North America	$\begin{aligned} & \mathrm{HLT} \\ & \mathrm{SEF} \end{aligned}$	$\begin{aligned} & \mathrm{HLT} \\ & \mathrm{SEF} \end{aligned}$	$\begin{aligned} & \hline \mathrm{HLT} \\ & \mathrm{SEF} \end{aligned}$	$\begin{aligned} & \mathrm{HLT} \\ & \mathrm{SEF} \end{aligned}$	$\begin{aligned} & \mathrm{HLT} \\ & \mathrm{SEF} \end{aligned}$	$\begin{gathered} \mathrm{LG} \\ \mathrm{SEF} \end{gathered}$	$\begin{aligned} & \text { DLT } \\ & \text { SEF } \end{aligned}$	$\begin{aligned} & \text { DLT } \\ & \text { SEF } \end{aligned}$	
China	$\begin{gathered} \mathrm{B6} \\ \mathrm{SEF} \end{gathered}$	$\begin{gathered} \mathrm{B6} \\ \mathrm{SEF} \end{gathered}$	$\begin{gathered} \text { A5 } \\ \text { SEF } \end{gathered}$	$\begin{gathered} \text { A5 } \\ \text { SEF } \end{gathered}$	$\begin{gathered} \text { B5 } \\ \text { SEF } \end{gathered}$	$\begin{gathered} \mathrm{A} 4 \\ \mathrm{SEF} \end{gathered}$	$\begin{gathered} \text { B4 } \\ \text { SEF } \end{gathered}$	$\begin{gathered} \hline \text { A3 } \\ \text { SEF } \end{gathered}$	

*2 Paper Amount

10	Near end
11	About 25\%
00	About 75\%
00	About 100%

*3 Available Paper Feed Unit

00	None
20	2-tray paper feed unit
30	1-tray paper feed unit

5.1.9 OUTPUT CHECK (SP5-804)

Conducting an Output Check

CAUTION: To prevent mechanical or electrical damage, do not keep an electrical component on for a long time.

1. Select SP5-804.
2. Select the number (see the table below) corresponding to the component.
3. Select "ON."
4. To stop the operation, select "OFF."

Output Check Table

Number 005, 006, 040, and 041 may not respond when the fusing temperature is high.

Num.	Component
001	Main Motor Forward
002	Main Motor Reverse
003	Quenching Lamp
004	Toner Supply Motor Forward
005	Fan Motor High
006	Fan Motor Low
007	Registration Clutch
008	By-pass Feed Clutch
009	Upper Feed Clutch
010	Lower Feed Clutch
011	BK-Low Lift Motor Up
012	BK-Low Lift Motor Down
013	Relay Clutch
014	BK-Relay Clutch
015	BK-Upper Feed Clutch
016	BK-Lower Feed Clutch
017	BK-Lift Motor
018	BK-Up Lift Motor Up
019	BK-Up Lift Motor Down
020	Duplex Inv Motor Reverse
021	Duplex Inv Motor Forward
022	Duplex Trans Motor
023	Duplex Gate Solenoid
024	Duplex Inv Motor Hold
025	Dup Trans Motor Hold
026	Polygon Motor
027	Polygon M/LD
028	LD
029	DF-Transport Motor
030	DF-Feed Motor
031	DF-Feed Clutch
032	DF-Pickup Solenoid
033	DF-Stamp Solenoid

Num.	
034	DF-Gate Solenoid
035	1 bin Gate Solenoid
036	1 bin Tray Motor
037	1 bin Tray Motor Hold
038	Fusing Solenoid
040	Duplex Fan Motor High
041	Duplex Fan Motor Low

5.1.10 SERIAL NUMBER INPUT (SP5-811)

Specifying Characters

SP5-811-001 specifies the serial number. For the basic machine (the machine without the optional controller), you use the numeric keypad. For the MFP machine (the machine with the optional controller), you use the numeric keypad and the optional operation panel.

Basic Machine

A serial number consists of 11 characters. You can change each character by pressing one of the first 11 keys on the numeric keypad (), (2), (3), ... (9), © , (O). For example, when you press the (1) key, the first character of the serial number changes as follows: $0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots \rightarrow 8 \rightarrow 9 \rightarrow \mathrm{~A} \rightarrow \mathrm{~B} \rightarrow \ldots \rightarrow \mathrm{X} \rightarrow \mathrm{Y}$ $\rightarrow Z$. When you press the (2) key, the second character changes likewise.

You can specify a digit ("0" to "9") or a capital letter ("A" to "Z") for the first four characters of a serial number, and you can specify a digit in the other seven characters (not capital letters).

MFP MAChine

You use the numeric keypad to type numbers. In addition, you use the optional operation panel to type other characters. When you press the "ABC" key, the letter changes as follows: $A \rightarrow B \rightarrow C$. To input the same letter two times, for example "AA," you press the "ABC" key, the "Space" key, and the "ABC" key. To switch between uppercase letters and lowercase letters, press the "Shift" key.

Serial Number and NVRAM

Serial numbers are stored in the NVRAM before shipment and are not cleared. You must specify a serial number after you replace the NVRAM.

5.1.11 NVRAM DATA UPLOAD/DOWNLOAD (SP5-824/825)

This procedure is for the basic machine only.

\triangle CAUTION
 Make sure that you turn off the main switch before inserting or removing a flash memory card. Installing or removing a flash memory card while the main switch is on may damage the BiCU or memory.

Overview

You can copy the data from the NVRAM to a flash memory card (NVRAM Upload), or from a flash memory card to the NVRAM (NVRAM download).

SP5-824-1 (NVRAM Upload)	From the BICU to a flash memory card
SP5-825-1 (NVRAM Download)	From a flash memory card to the BICU

You should execute NVRAM Upload before replacing the NVRAM or before executing SP5-801-2 (Memory Clear [Engine]; 5.1.7). You can copy back the data from the flash card to the NVRAM as necessary.

NVRAM Upload (SP5-824-1)

1. Turn off the main switch.
2. Remove the card cover $[B]$ (1 rivet).
3. Turn the face of the flash memory card [A] ("A" is printed on it) toward your left-hand side, and insert it into the card slot.
4. Turn on the main switch.
5. Start the SP mode and select SP5-824-001.
6. The machine erases the settings on the card (if any), then writes the machine's settings to the flash memory card. This takes about 20 seconds. If uploading fails, an error

B121S901.WMF message appears. If an error message appears, retry the upload procedure.
7. Turn off the main switch.
8. Remove the memory card.

NVRAM Download (SP5-825-1)

SP5-825-1 copies the data from the flash memory card to the NVRAM. The following data is NOT copied (the data in the NVRAM remains unchanged):

- SP8-221-001 (ADF Original Feed [Front])
- SP8-221-002 (ADF Original Feed [Back])
- SP8-381-001 (Total: Total Printer Pages)
- SP8-382-001 (Copy Application: Total Print Pages)
- SP8-391-001 (Large Size Print Pages [A3/DLT, Larger])
- SP8-411-001 (Prints Duplex)

1. Turn off the main switch.
2. Remove the card cover $[B]$ (1 rivet).
3. Turn the face of the flash memory card $[A]$ (" A " is printed on it) toward your lefthand side, and insert it into the card slot.
4. Turn on the main switch.
5. Start the SP mode and select SP5-825-001.
6. The machine erases the current settings, then writes the new settings onto the NVRAM on the BiCU board. This takes about 1 second. If downloading fails, an error message appears. If an error message appears, retry the download procedure.
7. Turn off the main switch.
8. Remove the memory card.

5.1.12 FIRMWARE UPDATE PROCEDURE FOR BASIC MACHINES

This section (5.1.12) illustrates how to update the firmware of the basic machine (the machine without the optional controller box). To update the firmware of the MFP machine (the machine with the optional controller box), see section 5.2.

1. Turn the main switch off.
2. Remove the card cover $[A]$ (1 rivet).
3. Insert the flash memory card $[\mathrm{B}]$.

B121S901.WMF
4. Press down the power switch on the operation panel and hold it, and turn on the main switch (on the front cover).
5. Select "Execute" [C].

6. Do not touch any key while the message "Load Status..." is displayed. This message indicates that the program is running.
7. Check that the message "End Sum..." is displayed. This message indicates that the program has ended normally.

8. Turn off the main switch (on the front cover).
9. Remove the flash memory card.
10. Install the card cover.
11. Turn the main switch on.

12. Check the operation.

5.1.13 TEST PATTERN PRINT (SP5-902-1)

Executing Test Pattern Printing

1. Specify the pattern number and press the OK key.
2. Press the copy start key. The copy mode is activated (Activating Copy Mode" in section 5.1.1).
3. Specify copy settings and press the ()$^{\text {key }}$.
4. To return to the SP mode, press the

Test Patterns

Test Patterns Using VCU	
No.	Pattern
0	(No print)
1	Vertical Lines (Single Dot)
2	Horizontal Lines (Single Dot)
3	Vertical Lines (Double Dot)
4	Horizontal Lines (Double Dot)
5	Grid Pattern (Single Dot)
6	Grid Pattern (Double Dot)
7	Alternating Dot Pattern
8	Isolated one dot
9	Black Band (Horizontal)
10	Trimming Area
11	Argyle Pattern (Single Dot)
12	Grayscales (Horizontal)
13	Grayscales (Vertical)
14	Grayscales (Vertical/Horizontal)
15	Grayscales (Vertical/Horizontal Overlay)
16	Grayscales With White Lines (Horizontal)
17	Grayscales with White Lines (Vertical)
18	Grayscales with White Lines
(Vertical/Horizontal)	

Test Patterns Using IPU	
No.	Pattern
30	Vertical Lines (Single Dot)
31	Horizontal Lines (Single Dot)
32	Vertical Lines (Double Dot)
33	Horizontal Lines (Double Dot)
34	Isolated Four Dots
35	Grid Pattern (Double Dot)
36	Black Band (Vertical, 1024 Dots)
37	Grayscales (Horizontal, 512 Dots)
38	Grayscales (Vertical, 256 Dots)
39	ID Patch
40	Cross
41	Argyle Pattern (128-Dot Pitch)
42	Square Gradation (64 Grades)
43	Square Gradation (256 Grades)
44	Grayscales (Horizontal, 32-Dot Width)
45	Grayscales (Vertical, 32-Dot Width)
46	Trimming Area (A3)
47	A4 Gradation Patches 1 (128 Grades)
48	A4 Gradation Patches 2 (128 Grades)
49	Trimming Area (A4)

	Test Patterns Using SBU
No.	Pattern
51	Grid Pattern (double dot)
52	Gray scale 1 (256 grades)
53	Gray scale 2 (256 grades)

5.1.14 COUNTER-EACH PAPER JAM (SP7-504)

The table lists the menu numbers (the last three digits of SP7-504-XXX) and the paper jam timings and locations.

Code	
001	Paper jam occurs at power on.
010	Paper does not reach the registration sensor (from a paper tray).
011	Paper does not reach the relay sensor.
012	Paper is caught at the relay sensor.
021	Paper does not reach the vertical transport sensor.
022	Paper is caught at the vertical transport sensor.
031	Paper does not reach the vertical transport sensor in the optional paper feed unit.
032	Paper is caught at the vertical transport sensor in the optional paper feed unit.
050	Paper does not reach the registration sensor (from the by-pass tray).
060	Paper does not reach the registration sensor during reverse-side printing (for duplex printing).
070	Paper is caught at the registration sensor.
120	Paper is caught at the exit sensor (previous page).
121	Paper does not reach the exit sensor.
122	Paper is caught at the exit sensor.
123	Paper does not reach the duplex inverter sensor (from the registration roller).
125	Paper is caught at the duplex inverter sensor.
126	Paper does not reach the duplex entrance sensor.
127	Paper is caught at the duplex entrance sensor.
128	Paper does not reach the duplex exit sensor.
129	Paper is caught at the duplex exit sensor.
130	Paper does not reach the one-bin tray.
131	Paper is caught at the one-bin tray.

5.1.15 SMC PRINT (SP5-990)

SP5-990 outputs machine status lists.

1. Select SP5-990.
2. Select a menu:

- Basic machine: 001 All, 002 SP, 003 UP, 004 Log, or 005 Big Font
- MFP machine: 001 All (Data List), 002 SP (Mode Data List), 003 User Program, 004 Logging Data, 005 Diagnostic Report, 006 Non-Default, 007 NIB Summary, 008 Net File Log, 021 Copier User Program, 022 Scanner SP, 023 Scanner User Program, 040 Parts Alarm Counter Print, 064 Normal Count Print, 065 User Code Counter, 066 Key Operator Counter, 067 Contact List Print, 069 Heading1 print, 071 Heading3 print, 072 Group List Print, 128 ACC Pattern, 129 User Color Pattern, or 160:ACC Pattern Scan

NOTE: The output given by the menu "Big Font" is suitable for faxing.
3. Press the "Execute" key.

- Basic machine: The copy mode is activated ("Activating Copy Mode" in section 5.1.1). Specify copy settings and press the (0) key. The machine status lists is output.
- MFP machine: The machine status list is output.

4. To return to the SP mode, press the

5.1.16 ORIGINAL JAM HISTORY DISPLAY (SP7-508)

Viewing the Copy Jam History

You can view the information on the most recent 10 events. The information on older events is deleted automatically.

NOTE: The information on jam history is saved in the NVRAM.

1. Select SP7-508.
2. Select one of the menu items ("Latest 1 " through Latest 10 ").
3. Press the OK key. The summary of the jam history is displayed.
4. To view more information, select "Detail."

Jam History Code

Code	Meaning
210	Original does not reach the registration sensor.
211	Original caught at the registration sensor.
212	Original does not reach the original exit sensor.
213	Original caught at the original exit sensor.
214	Original does not reach the original reverse sensor.
215	Original caught at the original reverse sensor.

5.1.17 ADF APS SENSOR OUTPUT DISPLAY (SP6-901)

Sensor Positions

	Large < $\ldots \ldots \gg S m a l l ~$			
W1	1	0	0	1
W2	0	0	1	1

B121S921.WMF

Reading Data

W1	W2	L1	L2	Paper Size	
				NA	EU/AA
0	0	0	0	-	B5 LEF
0	0	1	1	$11^{\prime \prime} \times 17^{\prime \prime}$	B4
0	1	0	0	$81 / 2^{\prime \prime} \times 51 / 2^{\prime \prime} \mathrm{LEF}$	A5 LEF
0	1	1	0	$81 / 2^{\prime \prime} \times 11^{\prime \prime} \mathrm{SEF}$	A4 SEF
1	1	1	1	$81 / 2^{\prime \prime} \times 14^{\prime \prime}$	$81 / 2^{\prime \prime} \times 13^{\prime \prime}$
1	0	0	0	$11^{\prime \prime} \times 81 / 2^{\prime \prime} \mathrm{LEF}$	A4 LEF
1	0	1	1	$11^{\prime \prime} \times 17^{\prime \prime}$	A3
1	1	0	0	$51 / 2^{\prime \prime} \times 81 / 2^{\prime \prime}$ SEF	A5 SEF
1	1	1	0	-	B5 SEF

1: Detected

5.2 FIRMWARE UPDATE PROCEDURE FOR MFP MACHINES

This section (5.2) illustrates how to update the firmware of the MFP machine (the machine with the optional controller box). To update the firmware of the basic machine (the machine without the optional controller box), see section 5.1.12.

To update the firmware for the MFP machine, you must have the new version of the firmware downloaded onto an SD (Secure Digital) Card. The SD Card is inserted into the lower slot on the right side of the controller box, viewed from the back of the machine.

5.2.1 BEFORE YOU BEGIN...

An SD card is a precision device, so always observe the following precautions when handling SD cards:

- Always switch the machine off before inserting an SD card. Never insert the SD card into the slot with the power on.
- After the power has been switched on, never remove the SD card from the service slot.
- Never switch the machine off while the firmware is downloading from the SD card.
- Store SD cards in a safe location where they are not exposed high temperature, high humidity, or exposure to direct sunlight.
- Always handle SD cards with care to avoid bending or scratching them. Never drop an SD card or expose it to other shock or vibration.
Keep the following points in mind while you are using the firmware update software:
- "Upload" means to send data from the machine to the SD card, and "download" means to send data from the SD card to the machine.
- To select an item on the LCD, touch the appropriate button on the soft touchscreen of the LCD, or press the appropriate number key on the 10-key pad of the operation panel. For example, "Exit (0)" displayed on the screen means you can touch the Exit button on the screen, or press the (0) button on the operation panel of the copier.
- Before starting the firmware update procedure, always make sure that the machine is disconnected from the network to prevent a print job for arriving while the firmware update is in progress.

5.2.2 FIRMWARE UPDATE PROCEDURE FOR MFP MACHINES

1. Turn off the main power switch.
2. Remove the slot cover $[A](\hat{\xi} \times 1)$
3. With the label on the $S D$ card $[B]$ facing as shown in the diagram, insert the SD card into the lower slot [C] on the controller box [D]. Slowly push the SD card into the slot so it locks in place.
4. Make sure the SD card is locked in place.
NOTE: To remove the SD, push it in to unlock the spring lock and then release it so it pops out of the slot.
5. If the machine is connected to a
 network, disconnect the network cable from the copier.
6. Switch the main power switch on. After about 10 seconds, the initial version update screen appears on the LCD in English.
7. Select a module.

- To scroll through the menus, press the Δ or ∇ key.
- To view the firmware version, press the \triangleright key. "ROM" is the information on the current firmware. "NEW" is the information on the firmware in the SD card.

B121S917.WMF

B121S917.WMF

B121S917.WMF

- To return to the menu, press the \triangleleft key.

- To select the module, press the OK key.
- To quit the firmware-update program, press the F3 key.
- To select all modules, press the (0) key.
- To cancel the selection, press the (0) key.
- To scroll through the module name, the serial number, and the version, press the \triangleleft key or \triangleright key.

When you have selected a module, the text lines are highlighted, and the "Verify" key and the "Update" key are displayed.

B121S916.WMF
8. Press the "Verify" key.
9. Check that the message "Verify Done" is displayed. This indicates that the data is correct.

If the data is incorrect, the message "Verify Error" is displayed. Do not use incorrect data.

10. Turn the main switch off and on.
11. Select a module and press the "Update" key. The firmware update program starts and the message "Loading" is displayed.

12. Check that the message "Update Done" is displayed.

B121S918.WMF
If an error occurs, the error code is displayed. For the information on the error codes, see the table.

Code	Cause	Necessary Action
E20	Physical address mapping error	\bullet Insert the SD card correctly. \bullet Use another SD card
E22	Decompression error	\bullet - Store correct data in the SD card.
E23	Update program error	\bullet Update controller program. \bullet Replace the controller.
E24	SD card access error	\bullet Insert the SD card correctly. \bullet Use another SD card.
E31	Download data inconsistency*	\bullet Insert the SD card that is used when the previous update procedure is interrupted.
E32	Download data inconsistency*	\bullet • Insert the SD card that stores the correct data.
E33	Version data error	\bullet Store the correct data in the SD card.
E34	Locale data error	\bullet Store the correct data in the SD card.
E35	Machine model data error	\bullet Store the correct data in the SD card.
E36	Module data error	\bullet Store the correct data in the SD card.
E40	Engine program error**	\bullet Store the correct data in the SD card. \bullet Replace BICU.
E42	Operation panel program error*	\bullet Store the correct data in the SD card. \bullet Replace the operation panel board.
E44	Controller program error*	\bullet Store the correct data in the SD card. \bullet Replace the controller board.
E50	Authentication error	\bullet Store the correct data in the SD card.

* You need to reinstall the program.

If the firmware update program is interrupted, for example, by power failure, keep the SD card inserted and turn the mains switch off and on. The firmware update program restarts. If you do not do so, the message "Reboot after Card insert" is displayed when you turn the main switch on.

5.2.3 NVRAM DATA UPLOAD/DOWNLOAD

Uploading Content of NVRAM to an SD card

Follow this procedure to upload SP code settings from NVRAM to an SD card.
NOTE: This data should always be uploaded to an SD card before the NVRAM is replaced.

1. Before switching the machine off, execute SP5990 001 (SMC Print). You will need a record of the NVRAM settings if the upload fails.
2. Switch the copier main power switch off.
3. Insert the SD card into service slot C3, then switch the copier on.
4. Execute SP5824 001 (NVRAM Data Upload) then press the "Execute" key When uploading is finished, the following files are coped to an NVRAM folder on the SD card. The fileis saved to the path and filename:

NVRAM1<serial number>.NV

Here is an example with Serial Number "B0700017":
NVRAM \B0700017. NV
5. In order to prevent an error during the download, be sure to mark the SD card that holds the uploaded data with the number of the machine from which the data was uploaded.
NOTE: NVRAM data from more than one machine can be uploaded to the same SD card.

Downloading an SD Card to NVRAM

Follow this procedure to download SP data from an SD card to the NVRAM in the machine.

- If the SD card with the NVRAM data is damaged, or if the connection between the controller and BICU is defective, the NVRAM data down load may fail.
- If the download fails, repeat the download procedure.
- If the second attempt fails, enter the NVRAM data manually using the SMC print you created before uploading the NVRAM data. (-5.2 .3)

1. Switch the copier main power switch off.
2. Insert the SD card with the NVRAM data into service slot C3.
3. Switch the copier main power switch on.
4. Execute SP5825 001 (NVRAM Data Download) and press the "Execute" key. NOTE: In order for the NVRAM data to download successfully, the serial number of the file on the SD card must match the serial number of the machine. If the serial numbers do not match, the download will fail.
This procedure downloads the following data to the NVRAM:

- Total Count
- C/O, P/O Count

6. DETAILED SECTION DESCRIPTIONS

6.1 OVERVIEW

6.1.1 COMPONENT LAYOUT

NOTE: The above illustration is the B123 model.
B121: No duplex unit, one paper tray
B122: No duplex unit, two paper trays

1. 2nd Mirror
2. Exposure Lamp
3. 1st Mirror
4. Exposure Glass
5. Original Width Sensors
6. Original Length Sensors
7. Lens Block
8. SBU
9. Exit Sensor
10. Scanner Motor
11. Inverter Roller
12. Duplex Inverter Sensor
13. Duplex Entrance Sensor
14. Hot Roller
15. Upper Transport Roller
16. Pressure Roller
17. OPC Drum
18. Middle Transport Roller
19. Duplex Exit Sensor
20. Image Density Sensor
21. Registration Roller
22. Registration Sensor
23. By-pass Tray
24. Lower Transport Roller
25. Upper Relay Roller
26. Relay Sensor
27. Lower Relay Roller
28. Vertical Transport Sensor
29. Paper Feed Roller
30. Paper End Sensor
31. Bottom Plate
32. PCU
33. Development Roller
34. WTL
35. Polygon Mirror Motor
36. Laser Unit
37. Toner Supply Bottle Holder
38. Exit Roller
39. 3rd Mirror
40. Scanner H.P. Sensor

6.1.2 PAPER PATH

The B123 model has a duplex unit mounted on the right side of the machine. All models have a by-pass tray.

6.1.3 DRIVE LAYOUT

1. Scanner Motor
2. Main Motor
3. Hot Roller
4. OPC Drum
5. Development Roller
6. Relay Clutch
7. Lower Paper Feed Clutch
8. By-pass Feed Clutch
9. Upper Paper Feed Clutch
10. Registration Clutch

6.2 BOARD STRUCTURE

6.2.1 BLOCK DIAGRAM

NOTE: 1) Only B123 models contain the duplex unit.
2) The one-bin tray is for B122/B123 with the optional controller box.

1. BICU (Base Engine and Image Control Unit)

The main board controls the following functions:

- Engine sequence
- Timing control for peripherals
- Image processing, video control
- Operation control, system control (Basic machine only)
- Machine control
- Drive control for the sensors, motors, and clutches of the printer and scanner
- High voltage supply board control
- Serial interfaces with peripherals
- Fusing control

2. SBU (Sensor Board Unit)

The SBU deals with the analog signals from the CCD and converts them into digital signals.

6.3 COPY PROCESS OVERVIEW

B121D907.WMF

B121D927.WMF

1. EXPOSURE

A xenon lamp exposes the original. Light reflected from the original passes to the CCD, where it is converted into an analog data signal. This data is converted to a digital signal, processed and stored in the memory. At the time of printing, the data is retrieved and sent to the laser diode.

2. DRUM CHARGE

In the dark, the charge roller gives a negative charge to the organic photoconductive (OPC) drum. The charge remains on the surface of the drum because the OPC layer has a high electrical resistance in the dark.

3. LASER EXPOSURE

The processed data scanned from the original is retrieved from the memory and transferred to the drum by a laser beam, which forms an electrical latent image on the drum surface. The amount of charge remaining as a latent image on the drum depends on the laser beam intensity, which is controlled by the BICU board.

4. DEVELOPMENT

The magnetic developer brush on the development roller comes in contact with the latent image on the drum surface. Toner particles are electrostatically attached to the areas of the drum surface where the laser reduced the negative charge on the drum.

5. ID SENSOR

The laser forms a sensor pattern on the drum surface. The ID sensor measures the reflectivity of the pattern. The output signal is one of the factors used for toner supply control. Also, the ID sensor measures the reflectivity of the drum surface. The output signal is used for charge roller voltage control.

6. IMAGE TRANSFER

Paper is fed to the area between the drum surface and the transfer roller at the proper time for aligning the copy paper and the developed image on the drum surface. Then, the transfer roller applies a high positive charge to the reverse side of the paper. This positive charge pulls the toner particles from the drum surface onto the paper. At the same time, the paper is electrostatically attracted to the transfer roller.

7. PAPER SEPARATION

Paper separates from the drum as a result of the electrostatic attraction between the paper and the transfer roller. The discharge plate (grounded) helps separate the paper from the drum.

8. CLEANING

The cleaning blade removes any toner remaining on the drum surface after the image transfers to the paper.

9. QUENCHING

The light from the quenching lamp electrically neutralizes the charge on the drum surface.

6.4 SCANNING

6.4.1 OVERVIEW

1. Exposure Lamp
2. 1st Scanner
3. Exposure Glass
4. Lens Block
5. Scanner Motor
6. Original Length Sensor
7. Original Width Sensors
8. Scanner H.P. Sensor

The original is illuminated by the exposure lamp (a xenon lamp). The image is reflected onto a CCD (charge coupled device) on the lens block via the 1st, 2nd, and 3rd mirrors, and through the lens on the lens block.
The 1st scanner consists of the exposure lamp, a reflector, and the 1st mirror.
A lamp stabilizer energizes the exposure lamp. The light reflected by the reflector is of almost equal intensity, to reduce shadows on pasted originals.
An optics anti-condensation heater is available as an option. It can be installed on the left side of the scanner. It turns on whenever the power cord is plugged in.

Lamp Stabilizer Fuse

B121D928.WMF

	Rating	Manufacturer	Type No.
ICP1	DC50 V/1.5 A	ROHM CO.,LTD	ICP-N38

6.4.2 SCANNER DRIVE

A stepper motor drives the 1st and 2nd scanners $[A, B]$. The 1st scanner is driven by the scanner drive motor [C], drive gear through the timing belt [D], scanner drive pulley [E], scanner drive shaft [F], and two timing belts [G]. The 2nd scanner is driven through the 1st scanner and two timing belts [H].

- Book mode -

The BICU controls and operates the scanner drive motor. In full size mode, the 1st scanner speed is $100 \mathrm{~mm} / \mathrm{s}$ during scanning. The 2 nd scanner speed is half that of the 1 st scanner.

In reduction or enlargement mode, the scanning speed depends on the magnification ratio. The returning speed is always the same, whether in full size or magnification mode. The image length change in the sub scan direction is done by changing the scanner drive motor speed, and in the main scan direction it is done by image processing on the BICU board.

Magnification in the sub-scan direction can be adjusted by changing the scanner drive motor speed using SP4-008. Magnification in the main scan direction can be adjusted using SP4-009.

- ADF mode -

The scanners are always kept at their home position (the scanner H.P. sensor [I] detects the 1st scanner) to scan the original. The ADF motor feeds the original through the ADF. In reduction/enlargement mode, the image length change in the sub-scan direction is done by changing the ADF motor speed. Magnification in the main scan direction is done in the BICU board, like for book mode.

Magnification in the sub-scan direction can be adjusted by changing the ADF motor speed using SP6-006-005. In the main scan direction, it can be adjusted with SP4009, like for book mode.

6.4.3 ORIGINAL SIZE DETECTION IN PLATEN MODE

B121D930.WMF

In the optics cavity for original size detection, there are four reflective sensors. The original width sensors $[A]$ detect the original width, and the original length sensors [B] detect the original length. These are the APS (Auto Paper Select) sensors. Each APS sensor is a reflective photosensor.

While the main switch is on, these sensors are active and the original size data is always sent to the CPU. However, the CPU checks the data only when the platen cover sensor [C] is activated. This is when the platen is positioned about 15 cm above the exposure glass, for example while it is being closed. The CPU can recognize the original size from the combination of on/off signals from the APS sensors.
If the copy is made with the platen fully open, the CPU decides the original size from the sensor outputs when the Start key is pressed.

B121D931.WMF

Original Size		Length Sensors		Width Sensors		SP4-301 display
A4/A3 version	LT/DLT version	L2	L1	W2	W1	
A3	$11^{\prime \prime} \times 17^{\prime \prime}$	1	1	1	1	11110000
B4	$8.5^{\prime \prime} \times 14^{\prime \prime}$	1	1	0	1	11010000
$8.5^{\prime \prime} \times 13^{\prime \prime}$	-	1	1	0	0	11000000
A4-SEF	$8.5^{\prime \prime} \times 13^{\prime \prime}$	0	1	0	0	01000000
A4-LEF	$11^{\prime \prime} \times 8.5^{\prime \prime}$	0	0	1	1	00110000
B5-LEF	$8.5^{\prime \prime} \times 11^{\prime \prime}$	0	0	0	1	00010000
A5-LEF	$8.5^{\prime \prime} \times 5.5^{\prime \prime}$	0	0	0	0	00000000
-	$8.5^{\prime \prime} \times 13^{\prime \prime}$	0	1	0	1	01010000

NOTE: 0: High (no paper), 1: Low (paper present)

The above table shows the outputs of the sensors for each original size. This original size detection method eliminates the necessity for a pre-scan and increases the machine's productivity.
For other combinations, "Cannot Detect Original Size" will be indicated on the operation panel display (if SP4-303 is kept at the default setting).
However, if the by-pass feeder is used, note that the machine assumes that the copy paper is short-edge first. For example, if A4 paper is placed long-edge first on the by-pass tray, the machine assumes it is A3 paper and scans the full A3 area for the first copy of each page of the original, disregarding the original size sensors. However, for each page, the data signal to the laser diode is stopped to match the copy paper length detected by the registration sensor. This means that copy time for the first page may be slower (because of the longer time required for scanning), but it will be normal for the rest of the job.
Original size detection using the ADF is described in the manual for the ADF.

6.5 IMAGE PROCESSING

6.5.1 OVERVIEW

B121D908.WMF

The CCD generates an analog video signal. The SBU (Sensor Board Unit) converts the analog signal to a 8-bit digital signal, then it sends the digital signal to the BICU board.

The BICU board can be divided into three image-processing blocks: the IPU (Image Processing Unit), FCI (Fine Character Image), and VCU (Video Control Unit).

- IPU: Auto shading, filtering, magnification, scanner γ correction, ID γ correction
- VCU: Printer γ correction, LD print timing control and laser power PWM control
- FCI (inside the VCU): Smoothing

NOTE: The IPU and VCU are contained in the same IC called SCRATCH on the BICU

Finally, the BICU board sends the video data to the LD drive board at the proper time. The DRAM on the BICU provides memory for the copier features. In addition, optional DRAM is added to the GW controller board when the printer/scanner option is installed.

6.5.2 SBU (SENSOR BOARD UNIT)

B121D918.WMF

The CCD converts the light reflected from the original into an analog signal. The CCD line has 7,400 pixels and the resolution is 600 dpi (23.6 lines $/ \mathrm{mm}$).
The CCD has two output lines, for odd and even pixels, to the analog processing circuit. The analog processing circuit performs the following operations on the signals from the CCD:

1. Z/C (Zero Clamp):

Adjusts the black level reference for even pixels to match the odd pixels.
2. Signal Amplification:

The analog signal is amplified by operational amplifiers.

After the above processing, the analog signals are converted to 8-bit signals by the A/D converter. Each pixel will be assigned a value on a scale of 256 grades. Then, the digitized image data goes to the BICU board.

6.5.3 IPU (IMAGE PROCESSING UNIT)

Overview

The image data from the SBU goes to the IPU (Image Processing Unit) on the BICU board, which carries out the following processes on the image data:

1. Auto shading
2. White/black line correction
3. ADS
4. Scanner gamma correction
5. Magnification (main scan)
6. Filtering (MTF and smoothing)
7. ID gamma correction
8. Binary picture processing
9. Error diffusion
10. Dithering
11. Video path control
12. Test pattern generation

The image data then goes to the VCU (basic machine) or to the GW controller (MFP machine).
NOTE: The IPU and VCU are contained in the same IC (called SCRATCH) on the BICU.

Image Processing Modes

The user can select Text, Photo and Special original types. However, each of these original types has a range of different choices (such as "sharp", "photographs", etc), which are listed in the table below.

- All modes can be customized with a range of SP modes that can be adjusted to meet user requirements.
- The user can select the mode that best suits their original with the following user tool: Original Type: User Tools - Copier Features - Image Adjustment

Original Type	Mode	Targeted Original Type
Text	Normal	Normal text originals
	Sharp	Newspapers, originals through which the rear side is moderately visible as faint text.
Photo	Photo priority	Text/photo images which contain mainly photo areas
	Text priority	Text/photo images which contain mainly text areas
	Photographs	Actual photographs
Special	Unneeded background	Originals through which the rear side is extremely visible (or have a colored background) with faint text. Also for originals with very grainy backgrounds (some newspapers) and faint text.
	Colored text	Originals with colored text and lines.
	Normal Pixel Photo	Photo images created by dither patterns (dots visible), such as newspaper photos - normal resolution.
	Coarse Pixel Photo	Photo images created by dither patterns (dots visible), such as newspaper photos - coarse resolution.
	Preserved Background (Normal Text)	Use instead of Normal Text if, e.g. an embedded white area causes Auto Image Density to initially remove the surrounding (darker) background but leave the rest. Use if the customer wishes to keep this background.

Image Processing Path

This diagram shows the various stages of image processing and where they are performed.

Original Modes

The machine has 10 original modes. There are two text modes, three photo modes, and five "special" modes.
The original mode key on the operation panel has two settings, text and photo. With the default settings, the machine uses "Normal Text (Text 1)" when the Text indicator is lit, and uses "Photo Priority (Photo 1)" when the Photo indicator is lit.
The customer can allocate different modes to the Text and Photo indicators with User Tools - Copier Features - Image Adjustment. Note that the Text indicator does not have to be allocated to a Text mode and the Photo key does not have to be allocated to a Photo mode. For example, the Text indicator can be allocated to Photo 3, and the Photo indicator can be allocated to Special 4.

If the user wishes to customize one of the original modes, the technician can change the settings using SP4-922 to SP4-942. Refer to "SP Modes for Each Image Processing Step". However, only one of the original modes can be customized at any one time.

SP Modes for Each Image Processing Step

The table on the next page shows which SP modes are used for each step of image processing.

- 4-921: Selects which original mode the settings from SP4-922 to SP4-932 will be applied to.
- 4-922: Selects the scanner γ curve. You can select either a curve for textbased originals (brings out text) or a curve for photo originals (better distinctions between shades of dark colors).
- 4-923: Selects the central notch position for the ID adjustment LEDs.
- 4-926: Adjusts the texture removal level (used with error diffusion).
- 4-927: Adjusts the line width.
- 4-928: Selects the dot erase level.
- 4-929: Converts white to black, and black to white
- 4-930: Adjusts the clarity of line images and the edges of solid images.
- 4-931: Adjusts the clarity of solid image areas.
- 4-932: Adjusts the clarity of low ID lines.
- 4-941: Selects the white line erase level.
- 4-942: Selects the black line erase level.

If a fax and/or scanner/printer option is installed, you can make separate settings for copier, fax, and scanner/printer mode with these SPs.
NOTE: The gray area means the setting cannot be changed using SP mode.

Auto Shading

Overview

There are two auto shading methods: black level correction and white level correction. Auto shading corrects errors in the signal level for each pixel.
Black and white level correction is always done.

Black Level Correction

The IPU detects the black dummy data from one end of the CCD signal (32 pixels at the end are blacked off) and takes the average of the black dummy data. Then, the black level value from each image pixel is detected.

White Level Correction

Previous machines used 8-bit data (256 gradations), but this machine uses 6-bit data (64 gradations). When white level correction is applied to 8 -bit data, white lines are more easily generated. This is because the normal variations in CCD pixel response (which are very slight), when rounded off by white level correction, will show up much easier on the copy when the data is divided into 256 gradations.

Before scanning the original, the machine reads a reference waveform from the white plate. The average of the white video level for each pixel is stored as the white shading data in the FIFO memory in the IPU (SCRATCH) chip.
The video signal information for each pixel obtained during image scanning is corrected by the IPU (SCRATCH) chip. If the maximum value of the video level is 64 or less, SC101 (exposure lamp error) is generated.
Auto shading is done before scanning for the first original as well as after scanning each page to prepare for the next page.

If the image density or the original mode is changed during a copy run, auto shading is done before scanning the next original.

White Line Erase

The white line erase feature is validated (default) when you specify a value other than "0" in SP4-941-001. This feature works as follows:

1) The copier scans the original.
2) The density level of each pixel is compared with its adjacent pixels.
3) If the density level of a pixel is extremely lower then adjacent pixels, the level is corrected. The density levels of the adjacent pixels are considered.
When you validate the white line erase feature, the feature works for all originals. This feature erases the white lines of 1- through 6-pixel width (approximately, up to 0.25 mm). The white lines that exceed this width are not erased.

When you specify "2," instead of "1," in SP4-941-001, the feature erases darker white lines (namely, less whiter lines). Note that this SP does not affect the width of white lines to be erased.

Black Line Erase

The black line erase feature is the function that erases black lines made by the dust or dirt on the exposure glass. The feature is validated (default) when you specify a value other than " 0 " in SP4-942-001.
When you specify a larger value in this SP, the feature erases weaker black lines (namely, less blacker lines). This SP also affects the width of black lines to be erased. If you specify "1" or "2," the feature erases the black lines of 1 - through 4pixel width (approximately, up to 0.17 mm); if you specify " 3 ," the feature erases the black lines of 1- through 6-pixel width (approximately, up to 0.25 mm). Note that some black lines on the original may be erased when you specify a larger value in the SP.

Auto image density (ADS)

In the SBU

ADS prevents the background of an original from appearing on copies. As the scanner scans down the page, the IPU on the BICU detects the peak white level for each scan line. The IPU determines the reference value for the A/D conversion for a particular scan line using the peak white level for that scan line. Then, the IPU sends the reference value data to the reference controller on the SBU.

When an original with a gray background is scanned, the density of the gray area is the peak white level density. Therefore, the original background will not appear on copies. Because peak level data is taken for each scan line, ADS corrects for any changes in background density down the page.

As with previous digital copiers, the user can select manual image density when selecting ADS, and the machine will use both settings when processing the original.

By Original Type

ADS mode is only enabled when the user has selected:

- Text mode 1 or 2 (Normal or Sharp), Photo mode 2 (Text/Priority), or Special mode 1 or 2 (Unneeded background or Colored Text).
This can be done using Adjust Original Mode (3) in User Tools (Copier Features).

Scanner Gamma (γ) Correction

The CCD output is not proportional to the quantity of light received. Scanner γ correction corrects the CCD output so that grayscale data is proportional to the quantity of light received.
The machine has two possible scanner gamma curves: Text and Photo. When selecting Text, the machine does not use scanner γ correction. As a result, the output is darker than the image density on the original. The advantage of this is that the machine can bring out gradations in paler areas. The disadvantage is that the machine cannot bring out gradations in darker areas, i.e. differences in shades of dark colors are hard to distinguish.

When selecting Photo, the machine uses scanner γ correction. One advantage of this is that the machine can bring out gradations in dark areas of photo image originals. The disadvantage is that it in some cases images come out lighter than the customer desires.

Main Scan Magnification

Changing the scanner speed enables enlargement and reduction along the sub scan direction. However, enlargement and reduction along the main scan direction is handled by the IPU (SCRATCH) chip. The processing for main scan enlargement/reduction is the same as in previous digital machines.

Mirroring for ADF Mode

B121D932.WMF

When making copies using the ADF, the magnification circuit creates a mirror image. This is because the scanning start position along the main scan direction in ADF mode is at the opposite corner of platen mode.

In platen mode, the original is placed face down on the exposure glass. The main scan start position is at corner [A], and the scanner moves down the page. In ADF mode, the ADF feeds the leading edge of the original to the DF exposure glass. Therefore as mentioned above, the main scan start position will be at the opposite corner.

To create the mirror image, the IPU stores each line in LIFO (Last In First Out) memory.

Filtering

Overview

There are several software filtering processes for enhancing the desired image qualities of the selected original mode. There are three MTF filters, a smoothing filter, independent dot erase, and line width correction. Each can be used only when certain modes are selected (details below) and are automatically applied.
The strength levels for the MTF are controlled by SP4-932. The levels for line width correction and independent dot erase are controlled by SP4-927 and 4-928, respectively.
The MTF filters bring out sharpness. The three MTF filters are Edge, Solid Image and Low ID Line. Line width correction adjusts the line width. Independent dot erase removes unwanted dots from the image.

MTF Filter Adjustment - Edge

In order to determine whether a given dot is part of an edge or not, the IPU checks all surrounding dots (vertical, horizontal, and diagonal). If the IPU determines that the dot is part of an edge, the machine applies the MTF filter for edges, using the value set in SP4-930. The higher the setting, the sharper the image. However, this is only used when the customer uses Text 1, Text 2, Photo 1-3, Special 1, Special 2 , or Special 5.
The default value is " 0 " for each mode. However the actual strength of " 0 " differs from mode to mode.

MTF Filter Adjustment - Solid

If the IPU detects that the dot is not part of an edge, the machine applies the MTF filter for solid areas using the value set in SP4-931. The higher the setting, the sharper the image. However, this is only used when the customer uses Text 2.

The default value is " 0 " for each mode. However the actual strength of " 0 " differs from mode to mode.

MTF Filter Adjustment - Low ID Line

The IPU also checks the image density of all dots. If a succession of low-density dots is detected, the machine interprets this as a low ID line and applies the MTF filter for low ID lines, using the value set in SP4-932. The higher the setting, the sharper the image. However, this is only used when the customer uses Text 1, Text 2, Photo 2, Special 1, Special 2, or Special 5.
The default value is " 0 " for each mode. However the actual strength of " 0 " differs from mode to mode.

Independent Dot Erase

When the user selects Text 1 and 2, Photo 2, and Special 1, 2, and 5 modes, independent dots are detected using a matrix and erased from the image. The detection level can be adjusted with SP4-928.
The higher setting, the greater number of dots the machine will erase. The machine erases the dots regardless of their image density. However, note that dots in meshlike images may be mistakenly detected as independent dots.

Line Width Correction

When the user selects Text 1 and 2, Photo 2, Special 1, 2, and 5, the thickness of lines is adjusted using the setting of SP4-927. Note that the default for all modes except Special 2 is OFF.

Line width correction is done by the IPU (SCRATCH) chip.

ID Gamma (γ) Correction

The machine automatically selects the most appropriate ID gamma correction based on the selected original type and the operation panel ID setting.

In all modes, ID gamma correction can be adjusted with SP4-923.

Gradation Processing

Overview

There are three types of gradation processing (listed below). Refer to the "Default Image Processing Mode for Each Original Type" section for more details on which processes are used for each original mode.

- Binary picture processing
- Error diffusion
- Dithering

Binary Picture Processing

The 8-bit image data is converted into 1-bit data (black and white image data). This is done when the user selects Text 2 or Special 1. The threshold for deciding whether a pixel is black or white cannot be adjusted.

Error Diffusion

Error diffusion reduces the difference in contrast between light and dark areas of a halftone image. Each pixel is corrected using the difference between it and the surrounding pixels. The corrected pixels are compared with an error diffusion matrix.

Error diffusion is applied when the user selects Text 1, Photo 1-3 and Special 2 and 5.

As the final step in error diffusion, a process called Texture Removal is applied to Text 1, Photo 2, Special 2, and Special 5 by default, but can also be applied to Photo 1 and 3 by changing the value of SP4-926.

Texture removal uses 256 threshold values in an 8×8 matrix. The value of SP4926 controls the application of Texture Removal for each of the 6 modes listed above. The settings are as follows:
0 : The default value for each mode is used. Text 1, Photo 2, Special 2, and Special 5 have a default of 3 (see below) and Photo 1 and 3 have a default of 1 .

1: No removal applied.

2 - 6: Removal applied at the level specified here. The higher the setting (level), the less clear the image will become (more texture removal).

Dithering

Each pixel is compared with the threshold in a dither matrix. Several matrices are available to bring out half-tone areas in images such as newspaper-type photographs. Dithering is only used for Special 3 and Special 4.

6.5.4 VIDEO CONTROL UNIT (VCU)

Fine Character and Image (FCI)

The FCl performs image smoothing. This functions only affects binary picture processed images for certain original modes.

B121D933.WMF
Usually, binary picture processing generates jagged edges on characters, as shown in the above illustration. These are reduced using edge smoothing. The FCI changes the laser pulse duration and position for certain pixels.
Fig. A shows the four possible pulse durations, and Fig. B shows how the laser pulse can be in one of three positions within the pixel. Fig. C shows an example of how edge smoothing is used.

FCI smoothing is only effective when Text 2 or Special 1 is selected. There is no SP adjustment for this.

Printer Gamma Correction

Printer correction corrects the data output from the IPU to the laser diode to account for the characteristics of the engine components (e.g. drum, laser diode, lenses).

The machine chooses the most suitable gamma curve for the original type selected by the user. There is no SP adjustment for this.

6.6 LASER EXPOSURE

6.6.1 OVERVIEW

B121D934.WMF
[A]: LD unit
2nd mirror
[B]: Synchronization detector lens
[A]: F-theta lens
[C]: Double toroidal lens
[B]: Polygon mirror
[D]: Shield glass
[C]: Cylindrical lens
[E]: OPC drum
[D]: Synchronization detector mirror
[F]: 1st mirror

- The LD drive board controls both the laser output and laser synchronization mechanism.
- The machine cuts off the power supply to the LD drive board if the front or right cover is opened.

6.6.2 AUTO POWER CONTROL (APC)

The LD driver IC drives the laser diode. To prevent the intensity of the laser beam from changing because of the temperature, the machine monitors the current passing through the laser diode (LD). The machine adjusts the current to the laser diode by comparing it with the reference level from the reference circuit.
This auto power control is done just after the machine is turned on and during printing.

The laser diode power is adjusted on the production line.
NOTE: Do not touch the variable resistors on the LD unit in the field.

6.6.3 LD SAFETY SWITCH

B121D915.WMF

To ensure technician and user safety and to prevent the laser beam from inadvertently switching on during servicing, there are safety switches at the front and right covers.
When the front cover or the right cover is opened, the power supply to the laser diode is interrupted.
The switches are installed on the +24 V line coming from the power supply unit, then the +5 VLD is generated from the +24 V supply after it goes through the interlock switches.

6.7 PHOTOCONDUCTOR UNIT (PCU)

6.7.1 OVERVIEW

B121D936.WMF

The PCU consists of the components shown in the above illustration. An organic photoconductor (OPC) drum (diameter: 30 mm) is used in this machine.

1. Cleaning Blade
2. Toner Collection Coil
3. Pick-off Pawl
4. OPC Drum
5. ID Sensor (see note)
6. Development Roller
7. Development Unit
8. Charge Roller
9. Charge Roller Cleaning Brush
10. Quenching Lamp (see note)

NOTE: The ID sensor and quenching lamp are not included in the PCU.

6.7.2 DRIVE

The main motor $[A]$ drives the drum $[B]$ through a series of gears and the drum drive shaft [C]. The main motor assembly includes a drive controller, which outputs a motor lock signal when the rotation speed is out of the specified range.

6.8 DRUM CHARGE

6.8.1 OVERVIEW

B121D938.WMF

This copier uses a drum charge roller to charge the drum. The drum charge roller [A] always contacts the surface of the drum [B] to give it a negative charge of -950 V .

The high voltage supply board gives a negative charge of -1700 V to the drum charge roller through the screw [C] and terminal plate [D]. This voltage can be changed using SP2-001-1.

6.8.2 CHARGE ROLLER VOLTAGE CORRECTION

Correction for Environmental Conditions

With a drum charge roller system, the voltage transferred from roller to drum varies with the temperature and humidity around the drum charge roller. The higher the temperature or humidity is the higher the applied voltage required.

To compensate, the machine uses the ID sensor to measure the effects of current environmental conditions. For this measurement, the process control parameters are balanced so that any small change in drum potential caused by environmental effects is reflected in a change in the amount of toner transferred to the drum.

This measurement is made immediately after the ID sensor pattern for toner density control. Immediately after making ID sensor pattern [A], the charge roller voltage stays the same, but the development bias goes up to -600 V ; as a result the drum potential is reduced to -650 V . The laser diode is not switched on, and the drum potential is now slightly higher than the development bias, so a very small amount of toner transfers to the drum. The ID sensor measures the density of this pattern [B], and the output voltage is known as Vsdp. This voltage is compared with Vsg (read from the bare drum at the same time).

If the humidity drops, the drum potential goes up (to a higher -ve voltage) even if the charge roller voltage supply stays the same (efficiency of voltage transfer is higher with lower humidity). As a result, less toner is transferred to ID sensor pattern $[B]$. If the sensor output reaches a certain point, the drum charge voltage will be reduced.
To determine whether to change the drum charge roller voltage, the machine compares Vsdp with Vsg.

- Vsdp/Vsg>0.95 = Make the drum charge voltage less -ve (smaller) by 50 V
- $\mathrm{Vsdp} / \mathrm{Vsg}<0.90=$ Make the drum charge voltage more -ve (larger) by 50 V

6.8.3 ID SENSOR PATTERN PRODUCTION TIMING

The ID sensor pattern is not made every page or every job.
It is only made in the following conditions:

- During warm-up at power on
- If the machine starts warming up after a certain time (default: 90 minutes) has passed since entering night/off mode or low power mode. The 90-minute interval can be changed using SP2-994.

6.8.4 DRUM CHARGE ROLLER CLEANING

Because the drum charge roller [A] always contacts the drum, it gets dirty easily. So, the cleaning brush [B] also contacts the drum charge roller all the time to clean the surface of the drum charge roller.

6.9 DEVELOPMENT

6.9.1 OVERVIEW

The development unit consists of the following parts.

1. Development roller
2. Mixing auger 1
3. Mixing auger 2
4. Doctor blade
5. TD sensor

This machine uses a single-roller development system. Two mixing augers mix the developer. The toner density (TD) sensor and image density (ID) sensor (see the illustration in the PCU section) are used to control the image density on the copy.

6.9.2 DRIVE

The main motor [A] drives the development roller [B] and mixing augers [C] through a train of gears and the development drive shaft [D]. When the PCU is pushed in, the development drive shaft engages the development roller gear.
The development drive gears (except for the gears in the development unit) are helical gears. These gears are quieter than normal gears.

6.9.3 DEVELOPER MIXING

The two mixing augers, $[\mathrm{E}, \mathrm{F}]$ keep the developer evenly mixed. Mixing auger 2 [E] transports excess developer, scraped off the development roller [G] by the doctor blade [H], towards the front of the machine. Mixing auger 1 [F] returns the excess developer, along with new toner, to the rear of the mixing assembly. Here the developer is reapplied to the development roller.

6.9.4 DEVELOPMENT BIAS

This machine uses a negative-positive development system, in which black areas of the latent image are at a low negative charge (about $-154 \pm 50 \mathrm{~V}$) and white areas are at a high negative charge (about -950 V).
To attract negatively charged toner to the black areas of the latent image on the drum, the high voltage supply board applies a bias of -650 volts to the development rollers throughout the image development process. The bias is applied to the development roller shaft $[A]$ through the drive shaft $[B]$.
The development bias voltage (-650 V) can be adjusted with SP2-201-1.

6.9.5 TONER SUPPLY

Toner Bottle Replenishment Mechanism

When a toner bottle is placed in the bottle holder unit [A] and the unit is pushed in completely, toner shutter [B] moves against the side [C] of the PCU. When the toner bottle holder lever [D] is put back in the original position, the cap [E] on the toner bottle is pulled away and kept in place by the chuck [F].

The toner supply mechanism transports toner from the bottle to the development unit. The toner bottle has a spiral groove [G] that helps move toner to the development unit.

To add a new toner bottle, first lift the toner bottle holder. When this is done, the chuck releases the toner bottle cap into its proper position to prevent toner from scattering.
Then, when the bottle holder unit is pulled out to add a new toner bottle, the toner shutter shuts to block the opening as a result of pressure from a spring.

Toner Supply Mechanism

The toner supply motor $[A]$ drives the toner bottle $[B]$ and the mylar blades [C]. First, the toner falls down into the toner bottle holder. The toner supply mylar blades transfer the toner to the slit [D]. When the PCU is installed in the machine, the shutter [E] above the PCU is opened by the toner bottle holder. Then the toner falls down into the development unit through the slit and the shutter.

6.9.6 TONER DENSITY CONTROL

Overview

There are four modes for controlling toner supply as shown in the following tables, which can be changed with by SP2-921. The factory setting is sensor control 1 mode.

Basically, the toner concentration in the developer is controlled using the standard TD sensor voltage (Vts), toner supply reference voltage (Vref), actual TD sensor output voltage (Vt), and ID sensor output data (Vsp/Vsg).

B121D949.WMF

The four-toner density control modes are as follows.

Mode	Sensor control 1 (SP2-921, "0"): Normally use this setting only
Toner supply decision	Compare Vt with a reference voltage (Vts or Vref)
Toner control process	Toner is supplied to the development unit when VVt is higher than the reference voltage (Vts or Vref). This mode keeps the Vref value for use with the next toner density control.
	Vts is used for the first toner density control after a new PCU has been installed, until it has been corrected with the ID sensor output. Vref is used after Vts has been corrected with the ID sensor output voltage (corrected during the first toner density control for a new PCU).
Toner supply amount	Varies
Toner end detection	Performed

Mode	Sensor control 2 (SP2-921, "1"): For designer's use only; do not use in the field
Toner supply decision	Compare Vt with a reference voltage (Vts)
Toner control process	This toner control process is the same as sensor control 1 mode. However, the reference voltage used is always Vts.
Toner supply amount	Varies
Toner end detection	Performed

Mode	Fixed control 1 (SP2-921, "2"): For designer's use only; do not use in the field
Toner supply decision	Compare Vt with a reference voltage (Vts or Vref)
Toner control process	This toner control process is the same as sensor control 1 mode.
Toner supply amount	Fixed (SP2-925)
Toner end detection	Performed

Mode	Fixed control 2 (SP2-921, "3"): Use temporarily if the TD sensor needs to be replaced
Toner supply decision	None
Toner control process	Toner is supplied every printed page regardless of Vt.
Toner supply amount	Fixed (SP2-925)
Toner end detection	Not performed

Toner Density Sensor Initial Setting

The TD sensor initial setting (SP2-214: Developer Initialize) procedure must be done after replacing the developer. During TD sensor initial setting, the TD sensor is set so that the TD sensor output is the value of SP2-926 (default: 2.4 V). This value will be used as the standard reference voltage (Vts) of the TD sensor.

Toner Concentration Measurement

The toner concentration in the developer is detected once every copy cycle. The sensor output voltage (Vt) during the detection cycle is compared with the standard reference voltage (Vts) or the toner supply reference voltage (Vref).

Vsp/Vsg Detection

The ID sensor detects the following voltages.

- Vsg: The ID sensor output when checking the drum surface
- Vsp: The ID sensor output when checking the ID sensor pattern

In this way, the reflectivity of both the drum surface and the pattern on the drum are checked, compensating for any variations in the reflectivity of the pattern on the drum or the reflectivity of the drum surface.
The ID sensor pattern is made on the drum by the charge roller and laser diode.
Vsp/Vsg is not detected every page or job; it is detected at the following times to decide Vref.

- During warm-up at power on
- If the machine starts warming up when the fusing temperature is $30^{\circ} \mathrm{C}$ or less (default) after entering night mode or low power mode (SP2-994 specifies the temperature setting).

Toner Supply Reference Voltage (Vref) Determination

The toner supply reference voltage (Vref) is used for toner supply determination (see below). Vref is determined using the following data:

- ID sensor output (Vsp/Vsg)
- (Vts or the current Vref) - Vt

Toner Supply Determination

The reference voltage (Vts or Vref) is the threshold voltage for determining whether or not to supply toner. If Vt becomes greater than the reference voltage, the machine supplies additional toner.

This can be checked using SP2-220.

Toner Supply Motor On Time Determinations

For fixed control mode, the toner supply motor on time is specified by the setting of SP2-925, and does not vary. The default setting is 200 ms for each copy. The toner supply motor on time for each value of SP2-925 is as follows.

Value of SP2-925	Motor On Time (t = 200 ms)
0	t
1	2 t
2	4 t
3	8 t
4	12 t
5	16 t
6	Continuously
7	Not supplied

For sensor control modes 1 and 2 , the toner supply motor on time is decided by the following factors.

- Vt
- Vref or Vts
- TD sensor sensitivity (coefficient: S, value is 0.4)

There are seven levels for toner supply motor on time as shown below.

Level	Decision	Motor On Time (seconds)
1	(Vts or Vref) < Vt \leq (Vts or Vref) $+\mathrm{S} / 16$	t (0.4)
2	(Vts or Vref) < Vt \leq (Vts or Vref) $+\mathrm{S} / 8$	tx 2 (0.8)
3	(Vts or Vref) < Vt \leq (Vts or Vref) $+\mathrm{S} / 4$	tx 4 (1.6)
4	(Vts or Vref) < Vt \leq (Vts or Vref) $+\mathrm{S} / 2$	tx 8 (3.2)
5	(Vts or Vref) < Vt \leq (Vts or Vref) $+4 \mathrm{~S} / 5$	t $\times 16$ (6.4)
6	$\mathrm{Vt} \geq$ (Vts or Vref) $+4 \mathrm{~S} / 16$ (near-end)	T (30); see note 3
7	$\mathrm{Vt} \geq$ (Vts or Vref) + S (toner end)	T (30); see note 3

NOTE: 1) The value of " t " can be changed using SP2-922 (default: 0.4 second)
2) The value of " T " can be changed using SP2-923 (default: 30 seconds)
3) T (30) means that toner is supplied intermittently in a $1 / 3$ duty cycle (1 s on, 2 s off) for 30 seconds

6.9.7 TONER SUPPLY IN ABNORMAL SENSOR CONDITIONS

ID Sensor

Readings are abnormal if any of the following conditions occur:

- $\mathrm{Vsg} \leq 2.5 \mathrm{~V}$
- $\mathrm{Vsg}<3.5 \mathrm{~V}$ when maximum power (979) is applied
- $\mathrm{Vsp} \geq 2.5 \mathrm{~V}$
- (Vsg - Vsp) < 1.0V
- $\mathrm{Vt} \geq 4.5 \mathrm{~V}$ or $\mathrm{Vt} \leq 0.2 \mathrm{~V}$

The above ID sensor values can be checked using SP2-221.
When this is detected, the machine changes the value of V ref to 2.5 V then does the toner density control process (in a similar way to sensor control mode 2).
No SC code is generated if the ID sensor is defective.

TD Sensor

The TD sensor output is checked every copy. If the readings from the TD sensor become abnormal, the machine changes the toner density control mode to fixed supply mode 2, and the toner supply amount per page is always 200 ms , regardless of the value of SP2-925. If the machine detects the TD sensor error condition 10 times consecutively, an SC code is generated (SC390) and the machine must be repaired.

6.9.8 TONER NEAR END/END DETECTION AND RECOVERY

The toner near end and end conditions are detected using the Vt and Vref values, in a similar way to toner density control.

This is done in all toner supply modes except for fixed mode 2, when toner end is not detected.

Toner Near End Detection

If Vt is at level 6 (see the table on the previous page) five times consecutively, the machine enters the toner near end condition and the toner end indicator starts blinking. Then the machine supplies toner for a certain time, which depends on the setting of SP2-923 (see the previous page).

Toner Near End Recovery

If the machine detects "Vt < (Vref or Vts) $+4 \mathrm{~S} / 5$ " twice consecutively in any of the following situations, the machine clears the toner near end condition.

- While in the toner recovery cycle (supplying toner on and off for 30 s-see the previous page) after the machine has detected a toner near end condition.
- During copying in the toner near end condition.
- If the front cover is opened and closed for more than 10 seconds while a toner near end condition exists.

Toner End Detection

There are two situations for entering the toner end condition.

- When Vt is level 7 three times consecutively, the machine enters the toner end condition.
- When 50 copies have been made since entering the toner near end condition. The number of copies between toner near-end and toner end can be changed using SP2-213.

Toner End Recovery

While turning on the main switch, if the front cover is opened for 10 seconds or more and then closed while a Toner End condition exists (following toner bottle replacement), the machine clears the Toner End condition. The recovery procedure is the same as for toner near end. It takes about two minutes.

6.10 DRUM CLEANING AND TONER RECYCLING

6.10.1 DRUM CLEANING

The cleaning blade [A] removes any toner remaining on the drum after the image is transferred to the paper. This model uses a counter blade system.
The cleaning blade scrapes off toner remaining on the drum. When toner builds up in the cleaning unit, toner at the top of the pile is removed by the toner collection coil [B].
To remove the toner and other particles that are accumulated at the edge of the cleaning blade, the drum turns in reverse for about 5 mm at the end of every copy job.

B121D950.WMF

6.10.2 TONER RECYCLING

Toner picked up by the toner collection coil [A], is transported to the opening $[B]$ in the side of the PCU. Then, this toner falls into the development unit with new toner coming from the toner bottle and it is all mixed together by mixing auger 1 [C] and used again.

B121D951.WMF

6.11 PAPER FEED

6.11.1 OVERVIEW

There are one or two paper trays, each of which can hold 250 sheets.
The paper tray feed stations use a friction pad system. To prevent paper from getting caught inside the machine when the tray is pulled out, the paper feed roller and shaft do not separate from the tray when the tray is pulled out.
The two relay sensors are used for paper jam detection. The lower one detects jams when paper is fed up from the optional paper feed unit.

The components of the paper feed station are as follows.

1. Paper End Sensor
2. Paper Feed Roller
3. Registration Roller
4. Paper Size Switch
5. Upper Relay Roller
6. Upper Relay Sensor
7. Lower Relay Sensor
8. Friction Pad

6.11.2 PAPER FEED DRIVE MECHANISM

The main motor [A] drives the pick-up and feed mechanism of both the first and second paper trays. The paper feed clutches $[B]$ transfer drive from this motor to the paper feed rollers [C].

When the paper feed clutch turns on, the feed roller starts to feed the paper. The paper feed clutch stays on until shortly after the registration sensor has been activated.

6.11.3 PAPER FEED AND SEPARATION MECHANISM

The paper feed roller [A] drives the top sheet of paper from the paper tray to the copier. The friction pad [B] allows only one sheet to feed at a time. The friction pad applies pressure to the feed roller with a spring [C].

The friction pad pressure cannot be adjusted.

B121D955.WMF

6.11.4 PAPER LIFT MECHANISM

When the paper tray $[A]$ is closed, projection $[B]$ on the copier frame pushes slider [C] (on the bottom part of the paper tray) off the bottom plate hook [D]. After the release slide comes off, compressed springs lift the bottom plate.

6.11.5 PAPER END DETECTION

If there is any paper in the paper tray, the paper stack lifts the feeler, the paper end sensor $[A]$ is deactivated.
When the paper tray runs out of paper, the paper end feeler drops into the cutout $[B]$ in the tray bottom plate and the paper end sensor is activated.

When the paper tray is drawn out with no paper in the tray, the shape of the paper end feeler causes it to lift up.

6.11.6 PAPER SIZE DETECTION

Paper Tray

Size SW	1	2	3
A3, 11" x 17"	\bigcirc	\bigcirc	\bigcirc
A4 LEF	\bigcirc	\bigcirc	\bigcirc
$\begin{array}{\|l\|l} \hline \text { A4 SEF, } \\ \text { (81/2" x } 11 " \end{array}$	\bigcirc	\bigcirc	\bigcirc
$\begin{array}{\|l\|l} \hline \text { A5 LEF, } \\ \text { 81/2" x } 14 " \end{array}$	\bigcirc	\bigcirc	\bigcirc
81/2" x 13"	\bigcirc	\bigcirc	\bigcirc
11" x 81/2"	\bigcirc	\bigcirc	\bigcirc
* (Asterisk)	\bigcirc	\bigcirc	\bigcirc

There are three paper size microswitches [A] on the front right plate of the paper tray unit. The switches are actuated by a paper size actuator $[B]$ behind the paper size indicator plate, which is on the front right of the tray.

Each paper size has its own actuator, with a unique combination of notches. To determine which size has been installed, the CPU reads which microswitches the actuator has switched off.

The CPU disables paper feed from a tray if the paper size cannot be detected. If the paper size actuator is broken, or if there is no tray installed, the Add Paper indicator will light.
When the paper size actuator is at the "*" mark, the paper tray can be set up to accommodate one of a wider range of paper sizes by using User Tools. If the paper size for this position is changed without changing the User Tool setting, a paper jam will result.

By-pass Tray

The by-pass feed paper size switch [A] monitors the paper width. The side fence is connected to the terminal plate gear. When the side fences move to match the paper width, the circular terminal plate rotates over the wiring patterns on the rectangular part of the paper size switch. The patterns for each paper width in the paper size switch are unique.

North America

CN No. (BICU)	$\mathbf{1 1 "} \times \mathbf{1 7 "}$	$\mathbf{8 1 / 2 " ~} \mathbf{x 1 4 "}$	$51 / \mathbf{1 "}^{\prime \prime} \times \mathbf{8 1 / 2 "}$		
CN136-1	ON/OFF	OFF	OFF	OFF	OFF
CN136-2	OFF	OFF	OFF	ON	OFF
CN136-3 (GND)	OFF	OFF	OFF	OFF	OFF
CN136-4	OFF	ON	OFF	OFF	ON
CN136-5	ON	ON	OFF	OFF	OFF

Europe/Asia

CN No. (BICU)	A3	A4 SEF	$\mathbf{8 " ~}^{\mathbf{n}} \mathbf{1 3 "}$	A5 SEF
CN136-1	ON/OFF	OFF	OFF	OFF
CN136-2	OFF	OFF	OFF	ON/OFF
CN136-3 (GND)	OFF	OFF	OFF	OFF
CN136-4	OFF	ON	ON	OFF
CN136-5	ON	ON	OFF	OFF

6.11.7 SIDE FENCES

If the tray is full of paper and it is pushed in strongly, the fences may deform or bend. This may cause the paper to skew or the side-to-side registration to be incorrect. To correct this, each side fence has a stopper [A] attached to it. Each side fence can be secured with a screw, for customers who do not want to change the paper size.

B121D960.WMF

6.11.8 PAPER REGISTRATION

The drive from the main motor $[A]$ is transmitted to the registration roller through the registration clutch gear [B].
The registration sensor [C] is used for correcting paper skew and for detecting paper misfeeds.

The cleaning mylar [D] contacts the registration roller. It removes paper dust from the registration roller so that this dust will not transfer into the development unit through the drumcleaning unit.
The amount of paper buckle at the
 registration roller to correct skew can be adjusted with SP1-003.

If jams frequently occur after registration, SP1-903 can be used to activate the relay clutch so that the relay roller assists the registration roller in feeding the paper along. When feeding from the by-pass tray, the by-pass feed clutch is activated, turning the by-pass feed roller. This feature may be needed when feeding thick paper, and cannot be used for the first paper feed tray.

6.12 IMAGE TRANSFER AND PAPER SEPARATION

6.12.1 OVERVIEW

B121D963.WMF

B121D962.WMF

The transfer roller [A] touches the surface of the drum [B]. The high voltage supply board supplies a positive current to the transfer roller, which attracts the toner from the drum onto the paper. The current depends on the paper width, paper type, and paper feed tray.

The curvature of the drum and the discharge plate [C] help the paper to separate from the drum. The discharge plate is grounded.
Drive from the drum through a gear [D] turns the transfer roller.

6.12.2 IMAGE TRANSFER CURRENT TIMING

There are two transfer current levels: low and high. The image transfer procedure is as follows:

1. When the CPU receives the image writing start signal, the CPU instructs the high voltage supply board to supply $+10 \mu \mathrm{~A}$ (low transfer current level) to the roller. This prevents any positively charged toner on the drum surface from transferring to the transfer roller.
2. At a certain time after the low transfer current has been supplied to the roller, high transfer current is applied to the roller to transfer the toner to the paper (see the table below).
3. After the trailing edge of the paper has passed through the roller, transfer current turns off. In multiple copy mode, the transfer current shifts again to the low transfer current.

The high transfer current levels (default) are as shown in the following table. With SP2-301, the high transfer current level used for the paper feed trays, duplex tray, by-pass tray, and cleaning an be adjusted.

	By-pass Tray (Thick/OHP)	Paper Tray/ By-pass Tray (Normal)	By-pass Tray (Special/ Envelope)	Duplex (2nd Side)	Duplex (2nd Side)
A3/A4 LEF	$11 \mu \mathrm{~A}$	$12 \mu \mathrm{~A}$	$13 \mu \mathrm{~A}$	$12 \mu \mathrm{~A}$	$17 \mu \mathrm{~A}$
DLT	$12 \mu \mathrm{~A}$	$18 \mu \mathrm{~A}$	$15 \mu \mathrm{~A}$	$18 \mu \mathrm{~A}$	$17 \mu \mathrm{~A}$
B4 SEF	$12 \mu \mathrm{~A}$	$12 \mu \mathrm{~A}$	$15 \mu \mathrm{~A}$	$12 \mu \mathrm{~A}$	$18 \mu \mathrm{~A}$
LT SEF	$17 \mu \mathrm{~A}$	$17 \mu \mathrm{~A}$	$15 \mu \mathrm{~A}$	$17 \mu \mathrm{~A}$	$24 \mu \mathrm{~A}$
A4 SEF	$21 \mu \mathrm{~A}$	$15 \mu \mathrm{~A}$	$28 \mu \mathrm{~A}$	$15 \mu \mathrm{~A}$	$24 \mu \mathrm{~A}$
B5 SEF	$22 \mu \mathrm{~A}$	$19 \mu \mathrm{~A}$	$28 \mu \mathrm{~A}$	$19 \mu \mathrm{~A}$	$22 \mu \mathrm{~A}$
A5 SEF	$22 \mu \mathrm{~A}$	$19 \mu \mathrm{~A}$	$28 \mu \mathrm{~A}$	$19 \mu \mathrm{~A}$	$28 \mu \mathrm{~A}$
HLT SEF	$22 \mu \mathrm{~A}$	$19 \mu \mathrm{~A}$	$28 \mu \mathrm{~A}$	-	-
B6 SEF	$22 \mu \mathrm{~A}$	$19 \mu \mathrm{~A}$	$28 \mu \mathrm{~A}$	-	-
A6 SEF	$22 \mu \mathrm{~A}$	$19 \mu \mathrm{~A}$	$34 \mu \mathrm{~A}$	-	-
Post card/Envelope	$22 \mu \mathrm{~A}$	$19 \mu \mathrm{~A}$	$34 \mu \mathrm{~A}$	-	-

Be careful when increasing the transfer current. This may cause a ghosting effect, in which part of the image at the top of the page is repeated lower down the page at a lower density. In the worst case, it may also damage the OPC drum.

6.12.3 TRANSFER ROLLER CLEANING

If the paper size is smaller than the image, or if a paper jam occurs during printing, toner may be transferred to the roller surface. To prevent the toner from transferring to the back side of the printouts, the transfer roller requires cleaning before the next printing run.

During transfer roller cleaning, the high voltage supply unit supplies a negative cleaning voltage (about -1 kV) to the transfer roller. Any negatively charged toner on the transfer roller is then transferred back to the drum. Then a positive cleaning current $(+10 \mu \mathrm{~A})$ is applied to the transfer roller to push back to the drum any positively charged toner on the transfer roller.
The machine goes through the cleaning mode in the following conditions:

- Before starting the printing job (only if enabled with SP2-996; note that the default setting is off)
- Just after the power is switched on.
- After a copy jam has been cleared
- After 10 or more sheets of paper have been copied and the copy job has finished.

Also, the transfer roller cleaning current can be adjusted using SP2-301-4.

6.12.4 PAPER SEPARATION MECHANISM

The discharge plate $[A]$ and the drum curvature of the drum help the paper to separate away from the drum. The discharge plate is grounded.

6.13 IMAGE FUSING AND PAPER EXIT

6.13.1 OVERVIEW

1. Paper exit roller
2. Exit sensor
3. Hot roller strippers
4. Pressure roller
5. Cleaning roller
6. Pressure spring
7. Fusing lamps
8. Thermistor
9. Thermostat
10. Hot roller
11. Thermostat

6.13.2 FUSING UNIT DRIVE AND RELEASE MECHANISM

B121D903.WMF

Fusing Unit Drive

The main motor [C] drives the fusing unit through a gear train, and drives the paper exit rollers $[A]$ through the timing belt $[B]$.

Drive Release Mechanism

When the right door [I] is open, the spring [G] pushes the top end of the gear holder [F] to the right. The drive gear is released from the fusing-unit drive gear [J]. When you close the right door, the mechanical link [H] pushes the spring [G]. The gear holder turns counterclockwise by the force of another spring [D], and engages with the fusing-unit drive gear.

Contact/Release Control

The drive power is not transmitted to the fusing unit (Drive Release Solenoid) during warming up when the fusing temperature (at the start) is $18^{\circ} \mathrm{C}$ or higher. The drive power is transmitted when the fusing temperature is less than $18^{\circ} \mathrm{C}$. This contact/release control is based on the following fact.

The hot roller [L] takes a shorter time to become hot enough if it is not turning during warming up. When, however, the fusing temperature (at the start) is low, the temperature of the hot-roller surface may become uneven.

Fusing Temp.	Contact/Release
$18^{\circ} \mathrm{C}$ or higher	Release
Less than $18^{\circ} \mathrm{C}$	Contact

You can disable this control (SP1-103-001).

Drive Release Solenoid

The fusing drive release solenoid $[E]$ is on the rear end of the gear holder. When the solenoid is off, the spring [D] pulls the gear holder, and the drive gear engages with the fusing unit drive gear. When

Solenoid	Drive gear
Off	Engaged
On	Released

The release solenoid comes on when you turn on the main switch if the fusing temperature is $18^{\circ} \mathrm{C}$ or higher (Contact/Release Control). The solenoid releases the drive gear from the fusing unit drive gear. The fusing lamps heat the hot roller [L] more effectively since the heat is not conducted to the pressure roller [K]. When the hot roller becomes hot enough, the release solenoid turns off, letting the drive gear engage with the fusing unit drive gear.

6.13.3 FUSING ENTRANCE GUIDE SHIFT

The entrance guide $[A]$ is adjustable for paper thickness to prevent creasing. The outer screw holes [B] on each side are used as the default setting.
If creasing occurs frequently in the fusing unit, adjust the entrance guide to the right, by securing it with the inner holes [C]. This allows more direct access to the gap between the hot roller and the pressure roller.

6.13.4 PRESSURE ROLLER

The pressure springs $[\mathrm{A}]$ constantly apply pressure between the hot roller [B] and the pressure roller [C].
Applied pressure can be changed by adjusting the position of the pressure springs. The spring is positioned at the end [D] as the default setting.

B121D968.WMF

6.13.5 FUSING TEMPERATURE CONTROL

Overview

There are two fusing lamps (not identical), two thermistors, and four thermostats. The fusing temperature is controlled using the thermistors [A].
The CPU checks the output from the fusing thermistor once every 1.5 seconds. The CPU decides how long the lamps must be switched on during the next 1.5 seconds by comparing the following temperatures:

- The center thermistor temperature and the target center temperature
- The end thermistor temperature and the target end temperature

The fusing lamp works to maintain a target fusing temperature of $160^{\circ} \mathrm{C}$ during copying.

Temperature Control

According to the operation mode, the fusing temperature is controlled. The diagram illustrates the transition of fusing temperature. After you turn the main switch on, the fusing temperature rises from the room temperature $\left(\mathrm{t}_{0}\right)$ to one of the specified temperatures. You can adjust some of the temperatures.

A1 Regular Start Mode/A2 Cold Start Mode (SP1-107-1/2)
Turning the fusing lamp on and off may affect the voltage of the power source in the room, causing the fluorescent lights in the room to flicker. To lighten this problem, you can reduce the checking repetition to 20 times.

When machine initialization ends, the fusing temperature is set to one of the following temperatures:

- The Standby Temperature (T_{2} : SP1-105-3/4) when there is no print job
- The First Print Temperature when the copier has received a print request during machine initialization
You cannot directly adjust the First Print Temperature. This temperature is $10^{\circ} \mathrm{C}$ higher (up to $185^{\circ} \mathrm{C}$) than the Copying Temperature (Copying Mode).

C Copying Mode

When the copier is making copies, the fusing temperature is set to one of the following temperatures:

- The Warm Up Temperature (SP1-105-1/2) to output the first print after the Low Power Mode (Low Power Mode)
- The Copying Temperature (T_{4} : SP1-105-5/6) to output the second print (and after the second)

You can raise the Warm Up Temperature to make better the fusing quality of the first print. While the copier is adjusting the fusing temperature to the Warm Up Temperature, the message "Copy starts after warm up" is displayed.

c Thick Paper Mode

When the machine is making copies on thick paper, the fusing temperature is set to the Thick Paper Temperature (SP1-105-9/10). When thick paper reaches the registration sensor, the copier checks the fusing temperature, and executes one of the following processing:

- Stops feeding the thick paper (and keeps it at the registration sensor) and waits for the fusing temperature to reach the predefined temperature-the temperature $5^{\circ} \mathrm{C}$ lower than the Thick Paper Temperature. (The fusing temperature keeps rising until it reaches the Thick Paper Temperature while the thick paper travels from the registration sensor to the fusing unit.)
- Continues feeding paper and executes the print job if the fusing temperature is high enough.

b1/b2 Standby Mode

When the copier is not making copies, the fusing temperature is set to the Standby Temperature (T_{2} : SP1-105-3/4). You can adjust this temperature. However, if you have raised this temperature, the BICU may be unable to generate an SC code in the event of fusing lamp error.
While in the Standby Mode, the copier checks the fusing temperature every 1.5 seconds (G: SP1-108-1). Turning on and off the fusing lamp may affect the voltage of the power source (in the room), causing the fluorescent lights (in the room) to flicker. To lighten such trouble, you can adjust the control period. However, if you elongate this period (to two seconds or longer), the BICU may be unable to generate an SC code in the event of a fusing lamp error.

e Low Power Mode

When the Energy Saver Timer (分 > System Settings > Timer Settings \rightarrow Energy Saver Timer) expires, the fusing temperature is set to the Low Power Temperature (T_{1} : SP1-105-7/8).

6.13.6 OVERHEAT PROTECTION

This machine protects its hardware from overheat by three features. Normally, the first feature can fully protect the hardware. The second feature works as the failsafe feature for the first one. The third feature works as the fail-safe feature for the second one.

FIRSt Feature: If the fusing temperature reaches $230^{\circ} \mathrm{C}$ (or higher) and stays so for one second, the controller turns the fusing lamp off. In a case like this, SC543 or SC553 is displayed.

Second Feature: If the fusing feature reaches $250^{\circ} \mathrm{C}$, the controller cuts off the 24 V line. (The fusing lamps are on the 24 V line.)

Third Feature: Two thermostats are attached on each line of the two fusing lamps. (four thermostats in total). One of the two thermostats cuts the power supply to the fusing lamp at $179^{\circ} \mathrm{C}$, and the other cuts the power supply at $180^{\circ} \mathrm{C}$. (Note that the thermostat temperature is somewhat lower than the fusing temperature.)

6.14 DUPLEX UNIT

6.14.1 OVERALL

The printed page from the fusing unit goes straight through to the exit tray, or upward to the inverter section, depending on the position of the junction gate.
If the user selects duplex mode, the page is directed to the inverter tray, then reversed through the duplex unit, and back into the machine for printing the second side.

1. Duplex Inverter Roller
2. Duplex Entrance Sensor
3. Upper Transport Roller
4. Middle Transport Roller
5. Duplex Exit Sensor
6. Lower Transport Roller
7. Junction Gate
8. Duplex Inverter Sensor

6.14.2 DRIVE MECHANISM

1. Duplex Inverter Roller
2. Duplex Inverter Motor
3. Upper Transport Roller
4. Duplex Transport Motor
5. Lower Transport Roller
6. Middle Transport Roller

6.14.3 BASIC OPERATION

To increase the productivity of the duplex unit, copies are printed as follows.

Larger than A4 Short-edge/LT Short-edge

The paper feed path can hold only one sheet of copy paper at a time.
Example: 8 pages. The number [A] in the illustration shows the order of pages. The number [B] in the illustration shows the order of sheets of copy paper (if black, this indicates the second side).

$\sqrt{5}$

Up to A4 Short-edge/LT Short-edge

The paper feed path can hold two sheets of copy paper.
Example: 8 pages. The number [A] in the illustration shows the order of pages. The number [B] in the illustration shows the order of sheets of copy paper (if black, this indicates the second side).

6.14.4 FEED IN AND EXIT MECHANISM

B121D972.WMF

During duplex copying, the inverter gate solenoid [A] switches on and the junction gate [B] switches over to direct the paper to the inverter. When the paper trailing edge reaches the duplex inverter sensor [C], the inverter roller [D] reverses its rotation direction and the paper goes to the duplex unit. The paper is then sent to the mainframe registration rollers to print the reverse side.

If there are two or more copies being made with A4/81/2" x 11" SEF (or smaller), the next sheet waits at the registration sensor for the current sheet to exit the inverter.

6.15 ENERGY SAVER MODES OF BASIC MACHINES

This section (6.15) illustrates the energy saver modes of the basic machine (the machine without the optional controller). For the energy saver modes of the MFP machine (the machine with the optional controller), see section 6.16.

Overview

The machine has two energy-saver modes: the Low Power Mode and the Night/Off Mode. The table lists the status of several components. For the fusing temperature, see section 6.13.5.

	Operation panel	Engine	Exhaust fan
Operating Mode*	On	On	On
Low Power Mode	Off	On	Off
Night/Off Mode	Off	Off**	Off

* The "Operating Mode" here refers to all the modes (and status) other than the Low Power Mode and Night/Off Mode. Actual power consumption (during the Operating Mode) depends on job status and environmental conditions.
** The SRAM is alive and backs up the engine controller.

AOF

When AOF is off, the engine controller is unable to start the Night/Off Mode. The user should keep AOF on (图國 > System Settings > Key Operator Tools > AOF).

Timers

The engine controller references the Energy Saver Timer to start the Low Power Mode, and references the Auto Off Timer to start the Night/Off Mode. The user can

The Energy Saver Timer and the Auto Off Timer start at the same time (t_{0}) when the machine ends all jobs or when the user ends all manual operations. Note that the Auto Off Timer does not wait for the Energy Saver Timer. Therefore, if the user specifies a smaller value in the Energy Saver Timer, the Auto Off Timer expires earlier than the Energy Saver Timer. In a case like this, the Low Power Mode is not activated. Instead, the engine controller starts the Night/Off Mode when the Auto Off Timer expires.

Specified value	Low Power Mode	Night/Off Mode
Energy Saver Timer > Auto Off Timer	Can start	Can start
Energy Saver Timer = Auto Off Timer	Cannot start	Can start
Energy Saver Timer < Auto Off Timer	Cannot start	Can start

Recovery

Any of the following operations brings the machine back to the Operating Mode:

- The power switch is pressed.
- Originals are set on the document feeder.
- The platen cover (or document feeder) is opened.

6.16 ENERGY SAVER MODES OF MFP MACHINES

This section (6.16) illustrates the energy saver modes of the MFP machine (the machine with the optional controller). For the energy saver modes of the basic machine (the machine without the optional controller), see section 6.15.

Overview

The machine has three energy-saver modes: the Low Power Mode, the Transit Mode, and the Night/Off Mode. The Transit Mode continues for about two seconds (probably, the user does not recognize this mode when it occurs). The table lists the status of several components. For the fusing temperature, see section 6.13.5.

	Operation panel	Engine	Exhaust fan
Operating Mode*	On	On	On
Low Power Mode	Off	On	Off
Transit Mode	Off	On	Off
Night/Off Mode	Off	Off**	Off

* The "Operating Mode" here refers to all the modes (or status) other than the Low Power Mode and Night/Off Mode. Actual power consumption (during the Operating Mode) depends on job status and environmental conditions.
** The SRAM is alive and backs up the engine controller.

AOF

See "AOF" in section 6.15.

Timers

The Energy Saver Timer and Auto Off Timer start at the same time (t_{0}) when the machine ends all jobs, when the user ends all manual operations, or when the controller starts the default application program (the program specified by the user [application program starts when the System Auto Reset Timer expires (兆固 > System Settings > Timer Settings > System Auto Reset Timer).

For more information, see "Timers" in section 6.15.

Recovery

Any of the following operations brings the machine back to the Operating Mode:

- The power switch is pressed.
- Originals are set on the document feeder.
- The platen cover (or document feeder) is opened.
- The controller receives a job over the network or the telephone line.
- An SC code is generated.

SPECIFICATIONS

1. GENERAL SPECIFICATIONS

Configuration:	Desktop
Copy Process:	Dry electrostatic transfer system
Originals:	Sheet/Book/Object
Original Size:	Maximum A3/11" x 17"
Copy Paper Size:	Maximum A3/11" x 17" Minimum A5 LEF/81/2" x 51/2" (Paper tray) A6 SEF/51/2" x 81/2" (Bypass) Custom sizes in the bypass tray: Width: 90 - 297 mm (3.55" - 11.69") Length: 148 - 600 mm (5.83" - 23.62") NOTE: Physically, the by-pass tray can handle the following size (but this size is not recognized by the application software) Width: 305 mm Length: $1,260 \mathrm{~mm}$
Copy Paper Weight:	Paper Tray: $60-90 \mathrm{~g} / \mathrm{m}^{2}, 16-24 \mathrm{lb} .$ Bypass: $52-162 \mathrm{~g} / \mathrm{m}^{2}, 14-43 \mathrm{lb} .$

Reproduction Ratios: 3 enlargement and 4 reduction

	A4/A3 Version	LT/DLT Version
Enlargement	200%	155%
	141%	129%
	122%	121%
Full Size	100%	100%
Reduction	93%	93%
	82%	78%
	71%	65%
	50%	50%

Zoom: $\quad 50 \%$ to 200%, in 1% steps

Power Source:
Taiwan
$110 \mathrm{~V}, 60 \mathrm{~Hz}$
12 A
Korea
$220 \mathrm{~V}, 60 \mathrm{~Hz}$
7 A
North and South America
$120 \mathrm{~V}, 60 \mathrm{~Hz}$
12 A
Europe, Asia
$220-240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
7 A

Power Consumption:

Full System	Not above 1.28 kW
Energy Saver	Not above 10 W
Off Mode	Not above 1 W

NOTE: Full system - Maximum possible power consumption (any combination of mainframe and options), excluding optional heaters, key counter, fax unit, and printer controller.

Noise Emission

	Sound Power Level
Standby (Mainframe/Full system):	Not above $40 \mathrm{~dB}(\mathrm{~A})$
Operating (Mainframe only):	Not above $62 \mathrm{~dB}(\mathrm{~A})$
Operating (Full System):	Not above $66 \mathrm{~dB}(\mathrm{~A})$

NOTE: The above measurements were made in accordance with ISO 7779.
Measurements were taken from the normal position of the operator.

Dimensions (W x D x H)
B121: $550 \times 568 \times 420 \mathrm{~mm}\left(21.7^{\prime \prime} \times 22.4^{\prime \prime} \times 16.5^{\prime \prime}\right)$
B122: $550 \times 568 \times 558 \mathrm{~mm}\left(21.7^{\prime \prime} \times 22.4 " \times 23.0^{\prime \prime}\right)$
B123: $587 \times 568 \times 558 \mathrm{~mm}$ (23.1" x 22.4" x 23.0")
NOTE: Measurement Conditions

1) With bypass feed table closed
2) Without the $A(R) D F$

Weight
B121: 35 kg (77 lb.)
B122: 43 kg (95 lb.$)$
B123: 47 kg (103 lb.)
(Excluding A(R)DF, platen cover, toner, and developer)

Copying Speed in Multicopy Mode (copies/minute):

Mode			B121	B122	B123
1-sided \downarrow 1-sided	Memory copy	A3 SEF/ $11^{\prime \prime} \times 17^{\prime \prime}$	9	10	10
		15	18	18	
	DF 1-to-1	A3 SEF/ $11^{\prime \prime} \times 17^{\prime \prime}$	8	9	9
	A4 LEF/ $11^{\prime \prime} \times 81 / 2^{\prime \prime}$	15	15	15	
1-sided \downarrow 2-sided	Memory copy	A3 SEF/ $11^{\prime \prime} \times 17^{\prime \prime}$	-	-	4
	A4 LEF/ $11^{\prime \prime} \times 81 / 2^{\prime \prime}$	-	-	18	

NOTE: Measurement Conditions:

1) Figures are for one-sided original to one-sided copy except where stated otherwise
2) Not APS mode
3) 100% size

Warm-up Time: \quad Basic model: Less than 15 seconds (at $20^{\circ} \mathrm{C}\left[68^{\circ} \mathrm{F}\right]$)
MFP model: Less than 35 seconds (at $20^{\circ} \mathrm{C}\left[68^{\circ} \mathrm{F}\right]$)
First Copy Time:
Not more than 6.5 seconds
NOTE: Measurement Conditions

1) From the ready state, with the polygonal mirror motor operating.
2) A4/LT copying
3) Not APS mode
4) 100% size
5) Paper feed from the upper tray

Copy Number Input: Numeric keypad, 1 to 99 (increment, decrement)
Manual Image Density:
Automatic Reset:

Automatic Shut-off: Default is 1 minute. Can be set from 1 to 240 minutes with user tools.

```
Copy Paper Capacity: Paper Tray:
    250 sheets (B121)
    250 sheets x 2 (B122/B123)
Optional Paper Tray Unit:
    500 sheets x 1, or 500 sheets x 2
    Bypass Tray:
    100 sheets (sheets up to }432\textrm{mm}[17"]
        4 0 \text { postcards}
        1 0 \text { envelopes}
NOTE: Copy weight: 80 g/m2 (20 lb.)
Toner Replenishment: Cartridge replacement (260 g/cartridge)
Optional Equipment: - Platen cover
- Auto document feeder
- Auto-reverse document feeder
- Paper tray unit (1 tray)
- Paper tray unit (2 trays)
- 1-bin tray
- Tray heater
- Optics anti-condensation heater
- Fax unit
- Handset
- Printer/scanner unit
- GW board
- IEEE }139
- IEEE }128
- Wireless LAN
- Bluetooth
- PostScript }
- NRS (CSS) kit
Toner Yield: 9k copies (A4 LEF, 6% full black, 1 to 2 copying, normal
text mode)
Copy-Tray Capacity 250 sheets
Memory
```

Basic Model: 16 MB
MFP Model: 64 MB + 128 MB DIMM

Duplex Unit (B123 only)

Copy Paper Size:
Maximum A3/11" x 17"
Minimum
A5/81/2" x 11"
Copy Paper Weight: $\quad 64-90 \mathrm{~g} / \mathrm{m}^{2}(20-24 \mathrm{lb}$.

2. SUPPORTED PAPER SIZES

2.1 ORIGINAL SIZE DETECTION

North America, Europe, Asia, Taiwan

Paper	Size (W x L)	North America		Europe/Asia/Taiwan	
		Platen	ADF	Platen	ADF
A3 SEF	$297 \times 420 \mathrm{~mm}$	0	0	X	X
B4 SEF	$257 \times 364 \mathrm{~mm}$	0	0	X	X
A4 SEF	$210 \times 297 \mathrm{~mm}$	A4/LT	A4/LT	X	X
A4 LEF	$297 \times 210 \mathrm{~mm}$	A4/LT	A4/LT	X	X
B5 SEF	$182 \times 257 \mathrm{~mm}$	0	0	0	X
B5 LEF	$257 \times 182 \mathrm{~mm}$	0	0	X	X
A5 SEF	$148 \times 210 \mathrm{~mm}$	0	0	0	X
A5 LEF	$210 \times 148 \mathrm{~mm}$	0	0	$\mathrm{S}^{\text {a }}$	X
B6 SEF	$128 \times 182 \mathrm{~mm}$	0	0	0	0
B6 LEF	$182 \times 128 \mathrm{~mm}$	0	0	0	0
8K SEF	$267 \times 390 \mathrm{~mm}$	0	0	0	0
16K SEF	$195 \times 267 \mathrm{~mm}$	0	0	0	0
16K LEF	$267 \times 195 \mathrm{~mm}$	0	0	0	0
DLT SEF	11.0 x 17.0 "	X	X	0	0
SEF	11.0 " x 15.0"	0	0	0	0
LG SEF	8.5 " x 14.0"	X	X	0	0
LT SEF	8.5 " $\times 11.0$ "	X	X	A4/LT	A4/LT
LT LEF	11.0 " x 8.5"	X	X	A4/LT	A4/LT
HLT SEF	5.5 " $\times 8.5$ "	0	X	0	0
HLT LEF	8.5 " 5.5 "	S	X	0	0
F/GL (F4) SEF	8.0 " $\times 13.0$ "	F	0	F	F
Foolscap SEF	8.5 " x 13.0"	F	0	F	F
Folio SEF	8.25 " x 13.0"	F	0	F	F
USB4 SEF	10.0 " $\times 14.0$ "	0	0	0	0
Eng Quarto SEF	8.0 " x 10.0"	0	0	0	0
Eng Quarto LEF	10.0 " x 8.0"	0	0	0	0

SIGN:

X: Detected
O: Not detected
F: \quad Detected as F (8.5" x 13.0")
S: Detected as specified
A4/LT: Detected as A4 or LT as specified
NOTE:
${ }^{\text {a }}$ When the settings of SP4-305-001 is "1: A4/LT," the settings of SP4-303 is invalidated (A5 LEF is not detected).

China, Korea

P Paper	Size (W \times L)	China/Korea		China/Korea (localized)	
		Platen	ADF	Platen $^{\text {b }}$	ADF $^{\text {c }}$
A3 SEF	$297 \times 420 \mathrm{~mm}$	X	X	X	O
B4 SEF	$257 \times 364 \mathrm{~mm}$	X	X	O	O
A4 SEF	$210 \times 29 \mathrm{~mm}$	X	X	X	O
A4 LEF	$297 \times 210 \mathrm{~mm}$	X	X	X	O
B5 SEF	$182 \times 257 \mathrm{~mm}$	X	X	O	O
B5 LEF	$257 \times 182 \mathrm{~mm}$	X	X	O	O
A5 SEF	$148 \times 210 \mathrm{~mm}$	O	X	O	X
A5 LEF	$210 \times 148 \mathrm{~mm}$	S	X	S	X
B6 SEF	$128 \times 182 \mathrm{~mm}$	O	O	O	O
B6 LEF	$182 \times 128 \mathrm{~mm}$	O	O	O	O
8K SEF	$267 \times 390 \mathrm{~mm}$	O	O	X	X
16K SEF	$195 \times 267 \mathrm{~mm}$	O	O	X	X
16K LEF	$267 \times 195 \mathrm{~mm}$	O	O	X	X
DLT SEF	$11.0^{\prime \prime} \times 17.0^{\prime \prime}$	O	O	O	O
SEF	$11.0^{\prime \prime} \times 15.0^{\prime \prime}$	O	O	O	O
LG SEF	$8.5^{\prime \prime} \times 14.0^{\prime \prime}$	O	O	O	O
LT SEF	$8.5^{\prime \prime} \times 11.0^{\prime \prime}$	A4/LT	A4/LT	O	O
LT LEF	$11.0^{\prime \prime} \times 8.5^{\prime \prime}$	A4/LT	A4/LT	O	O
HLT SEF	$5.5^{\prime \prime} \times 8.5^{\prime \prime}$	O	O	O	O
HLT LEF	$8.5^{\prime \prime} \times 5.5^{\prime \prime}$	O	O	O	O
F/GL (F4) SEF	$8.0^{\prime \prime} \times 13.0^{\prime \prime}$	O	F	O	F
Foolscap SEF	$8.5^{\prime \prime} \times 13.0^{\prime \prime}$	O	F	O	F
Folio SEF	$8.25^{\prime \prime} \times 13.0^{\prime \prime}$	O	F	O	F
USB4 SEF	$10.0^{\prime \prime} \times 14.0^{\prime \prime}$	O	O	O	O
Eng Quarto SEF	$8.0^{\prime \prime} \times 10.0^{\prime \prime}$	O	O	O	O
Eng Quarto LEF	$10.0^{\prime \prime} \times 8.0^{\prime \prime}$	O	O	O	O

SIGN:

X: Detected
O: \quad Not detected
F: Detected as F (8.5" x 13.0")
S: Detected as specified
A4/LT: Detected as A4 or LT as specified

NOTE:

${ }^{\text {b }}$ Change the settings of SP4-305-001. Adjust the positions of the APS sensors.
${ }^{c}$ Change the settings of SP4-305-001.

2.2 PAPER FEED AND EXIT

Main Frame, Duplex

Paper	Size (W x L)	Main frame tray				Duplex
		China/ Korea	North America	Europe	Asial Taiwan	
A3 SEF	$297 \times 420 \mathrm{~mm}$	X	M	X	X	X
A3 LEF	$420 \times 297 \mathrm{~mm}$	0	0	0	0	0
B4 SEF	$257 \times 364 \mathrm{~mm}$	X	M	M	M	X
B4 LEF	$364 \times 257 \mathrm{~mm}$	0	0	0	0	0
A4 SEF	$210 \times 297 \mathrm{~mm}$	X	M	X	X	X
A4 LEF	$297 \times 210 \mathrm{~mm}$	X	X	X	X	X
B5 SEF	$182 \times 257 \mathrm{~mm}$	M	M	M	M	X
B5 LEF	$257 \times 182 \mathrm{~mm}$	X	M	M	M	X
A5 SEF	$148 \times 210 \mathrm{~mm}$	0	0	0	0	X
A5 LEF	$210 \times 148 \mathrm{~mm}$	X	M	X	X	X
B6 SEF	$128 \times 182 \mathrm{~mm}$	0	0	0	0	0
B6 LEF	$182 \times 128 \mathrm{~mm}$	0	0	0	0	0
A6 SEF	$105 \times 148 \mathrm{~mm}$	0	0	0	0	0
A6 LEF	$148 \times 105 \mathrm{~mm}$	0	0	0	0	0
DLT SEF	$11^{\prime \prime} \times 17^{\prime \prime}$	M	X	M	M	X
DLT LEF	$17^{\prime \prime} \times 11^{\prime \prime}$	0	0	0	0	0
LG SEF	81/2" x 14"	M	X	M	M	X
LG LEF	$14^{\prime \prime} \times 81 / 2^{\prime \prime}$	0	0	0	0	0
Gov. LG SEF	81/4" $\times 14^{\prime \prime}$	M	M	M	M	X
Gov. LG LEF	14" $\times 81 / 4$ "	0	0	0	0	0
LT SEF	81/2" x 11"	M	X	M	M	X
LT LEF	$11^{\prime \prime} \times 81 / 2^{\prime \prime}$	M	X	X	X	X
HLT SEF	51/2" $\times 81 / 2^{\prime \prime}$	0	0	0	0	0
HLT LEF	81/2" $\times 51 / 2^{\prime \prime}$	M	M	M	M	0

SIGN:

X: Detected (Main frame tray)/Processed (Duplex)
O: \quad Not detected (Main frame tray)/Not processed (Duplex)
M: Selected manually
K: Specified from the key pad
NOTE:
Custom
W: 90 to 297 mm
L: 148 to 600 mm
(Continued)

Paper	Size (W x L)	Main frame tray				Duplex
		China/ Korea	North America	Europe	Asia/ Taiwan	
Executive SEF	71/4" $\times 101 / 2^{\prime \prime}$	M	M	M	M	X
Executive LEF	101/2" x 71/4"	M	M	M	M	X
F SEF	8" $\times 13^{\prime \prime}$	M	M	M	M	X
F LEF	$13^{\prime \prime} \times 8$ "	0	0	0	0	0
Foolscap SEF	81/2" x 13"	M	X	X	X	X
Foolscap LEF	$13^{\prime \prime} \times 81 / 2^{\prime \prime}$	0	0	0	0	0
Folio SEF	81/4" $\times 13^{\prime \prime}$	M	M	M	M	X
Folio LEF	13 " x 81/4"	0	0	0	0	0
8K SEF	$267 \times 390 \mathrm{~mm}$	M	M	M	M	X
8K LEF	$390 \times 267 \mathrm{~mm}$	0	0	0	0	0
16K SEF	$195 \times 267 \mathrm{~mm}$	M	M	M	M	X
16K LEF	$267 \times 195 \mathrm{~mm}$	M	M	M	M	X
C5 Env. SEF	$162 \times 229 \mathrm{~mm}$	0	0	0	0	0
C6 Env. SEF	$114 \times 162 \mathrm{~mm}$	0	0	0	0	0
DL Env. SEF	$110 \times 220 \mathrm{~mm}$	0	0	0	0	0
Com10 SEF	41/8" $\times 91 / 2^{\prime \prime}$	0	0	0	0	0
Monarch SEF	$37 / 8{ }^{\prime \prime} \times 71 / 2^{\prime \prime}$	0	0	0	0	0
Custom		0	0	0	0	0

SIGN:

X: \quad Detected (Main frame tray)/Processed (Duplex)
O: \quad Not detected (Main frame tray)/Not processed (Duplex)
M: Selected manually
K: Specified from the key pad

NOTE:

Custom W: 90 to 297 mm L: 148 to 600 mm

Optional Paper Tray, One-Bin Tray, By-pass Tray

Paper	Size (${ }^{\text {x }}$ L)	Opt. paper tray	Onebin tray	By-pass			
				China	North America	Europe	Asial Taiwa n
A3 SEF	$297 \times 420 \mathrm{~mm}$	X	X	X	M	X	X
A3 LEF	$420 \times 297 \mathrm{~mm}$	0	0	0	0	0	0
B4 SEF	$257 \times 364 \mathrm{~mm}$	M	X	X	M	M	M
B4 LEF	$364 \times 257 \mathrm{~mm}$	0	0	0	0	0	0
A4 SEF	$210 \times 297 \mathrm{~mm}$	X	X	X	M	X	X
A4 LEF	$297 \times 210 \mathrm{~mm}$	X	X	M	M	M	M
B5 SEF	$182 \times 257 \mathrm{~mm}$	M	X	X	M	M	M
B5 LEF	$257 \times 182 \mathrm{~mm}$	M	X	M	M	M	M
A5 SEF	$148 \times 210 \mathrm{~mm}$	M	X	X	M	X	X
A5 LEF	$210 \times 148 \mathrm{~mm}$	0	X	M	M	M	M
B6 SEF	$128 \times 182 \mathrm{~mm}$	0	0	X	M	M	M
B6 LEF	$182 \times 128 \mathrm{~mm}$	0	0	0	0	0	0
A6 SEF	$105 \times 148 \mathrm{~mm}$	0	0	K	K	K	K
A6 LEF	$148 \times 105 \mathrm{~mm}$	0	0	0	0	0	0
DLT SEF	$11^{\prime \prime} \times 17^{\prime \prime}$	X	X	M	X	M	M
DLT LEF	$17^{\prime \prime} \times 11^{\prime \prime}$	0	0	0	0	0	0
LG SEF	81/2" $\times 14^{\prime \prime}$	X	X	M	X	M	M
LG LEF	$14^{\prime \prime} \times 81 / 2^{\prime \prime}$	0	0	0	0	0	0
Gov. LG SEF	81/4" x 14"	M	X	K	K	K	K
Gov. LG LEF	$14^{\prime \prime} \times 81 / 4^{\prime \prime}$	0	0	0	0	0	0
LT SEF	81/2" x 11"	X	X	M	X	M	M
LT LEF	$11^{\prime \prime} \times 81 / 2^{\prime \prime}$	X	X	M	M	M	M
HLT SEF	$51 / 2^{\prime \prime} \times 81 / 2^{\prime \prime}$	M	X	M	X	M	M
HLT LEF	81/2" $\times 51 / 2^{\prime \prime}$	0	X	0	0	0	0

SIGN:

X: Detected (Opt. paper tray and By-pass)/Processed (One-bin tray)
O: Not detected (Opt. paper tray and By-pass)/Not processed (One-bin tray)

M: Selected manually
K: Specified from the key pad
NOTE:
Custom W: 90 to 297 mm L: 148 to 600 mm
(Continued)

Paper	Size (W x L)	Opt. paper tray	Onebin tray	By-pass			
				China	$\begin{aligned} & \text { North } \\ & \text { America } \end{aligned}$	Europe	Asial Taiwa n
Executive SEF	$71 / 4{ }^{\prime \prime} \times 101 / 2^{\prime \prime}$	M	X	M	M	M	M
Executive LEF	101/2" x 71/4"	M	X	M	M	M	M
F SEF	8" $\times 13^{\prime \prime}$	M	X	M	M	X	X
F LEF	$13^{\prime \prime} \times 8$ "	0	0	0	0	0	0
Foolscap SEF	81/2" x 13"	X	X	M	M	M	M
Foolscap LEF	$13^{\prime \prime} \times 81 / 2^{\prime \prime}$	0	0	0	0	0	0
Folio SEF	81/4" x 13"	M	X	M	M	M	M
Folio LEF	13 " x 81/4"	0	0	0	0	0	0
8K SEF	$267 \times 390 \mathrm{~mm}$	M	X	M	M	M	M
8K LEF	$390 \times 267 \mathrm{~mm}$	0	0	0	0	0	0
16K SEF	$195 \times 267 \mathrm{~mm}$	M	X	M	M	M	M
16K LEF	$267 \times 195 \mathrm{~mm}$	M	X	M	M	M	M
C5 Env. SEF	$162 \times 229 \mathrm{~mm}$	0	0	M	M	M	M
C6 Env. SEF	$114 \times 162 \mathrm{~mm}$	0	0	M	M	M	M
DL Env. SEF	$110 \times 220 \mathrm{~mm}$	0	0	M	M	M	M
Com10 SEF	$41 / 8{ }^{\prime \prime} \times 91 / 2^{\prime \prime}$	0	0	M	M	M	M
Monarch SEF	$37 / 8$ " $\times 71 / 2^{\prime \prime}$	0	0	M	M	M	M
Custom		0	0	X	X	X	X

SIGN:

X: Detected (Opt. paper tray and By-pass)/Processed (One-bin tray)
O: \quad Not detected (Opt. paper tray and By-pass)/Not processed (One-bin tray)

M: Selected manually
K: Specified from the key pad
NOTE:
Custom W: 90 to 297 mm L: 148 to 600 mm

3. MACHINE CONFIGURATION

Unit/Component		Machine Code	Diagram
Copier	Copier (1-tray non-duplex model)	B121	[H]
	Copier (2-tray non-duplex model)	B122	[D]
	Copier (2-tray with duplex)	B123	[G]
	Platen cover (optional)	B406	[F]
	ADF (optional)	B616	[A]
	ARDF (optional)	B617	[A]
	Paper tray unit-1 tray (optional)	B385	[E]
	Paper tray unit-2 trays (optional)	B384	[1]
	1-bin tray (optional)	B621	[C]
	Tray heater (optional)	-	-
	Optics anti-condensation heater (optional)	-	-
GW	GW controller (optional)	B658	[J]
Fax	Fax controller (optional)	B620	[L]
	Handset (optional)	B433	[B]
Printer/ scanner	Printer scanner controller (optional)	B622	[M]
	PostScript 3 (optional)	B681	[K]
Network	IEEE 1394	B581	[N]
	IEEE 1284	B679	[N]
	Wireless LAN	B682	[N]
	Bluetooth	G377	[N]

NOTE: The GW controller is supplied with the dedicated controller box and operation panel.

4. OPTIONAL EQUIPMENT

ARDF

Original Size:	Standard sizes Single-sided mode: A3 to A5, 11" x 17" to 51/2" x 81/2" Double-sided mode: A3 to A5, 11" x 17" to 51/2" x 81/2" Non-standard sizes (Single-sided mode only) Max. width 297 mm Min. width 105 mm Max. length 1260 mm Min. length 128 mm
Original Weight:	Single-sided mode: $40-128 \mathrm{~g} / \mathrm{m}^{2}, 10-34 \mathrm{lb}$. Double-sided mode: $52-105 \mathrm{~g} / \mathrm{m}^{2}, 14-28 \mathrm{lb}$.
Table Capacity:	50 sheets ($80 \mathrm{~g} / \mathrm{m}^{2}, 70 \mathrm{~kg}$)
Original Standard Position:	Center
Separation:	FRR
Original Transport:	Roller transport
Original Feed Order:	From the top original
Reproduction Range:	50 to 200\% (Sub scan direction only)
Power Source:	24 and 5 Vdc from the copier
Power Consumption:	50 W
Dimensions (W x - x H):	$550 \times 470 \times 130 \mathrm{~mm}$
Weight:	10 kg

ADF	
Original Size:	Standard sizes (Single-sided mode only): A3 to A5, 11" x 17" to 51/2" x 81/2" Non-standard sizes (Single-sided mode only): Max. width 297 mm Min. width 105 mm Max. length $1,260 \mathrm{~mm}$ Min. length 128 mm
Original Weight:	$52-105 \mathrm{~g} / \mathrm{m}^{2}(14-28 \mathrm{lb}$.
Table Capacity:	30 sheets ($\left.80 \mathrm{~g} / \mathrm{m}^{2}, 22 \mathrm{lb}.\right)$
Original Standard Position:	Center
Separation:	FRR
Original Transport:	Roller transport
Original Feed Order:	From the top original
Reproduction Range:	$50-200 \%$
Power Source:	24 and 5 Vdc (from the main frame)
Power Consumption:	25 W
Dimensions (W x D \times H):	$550 \mathrm{~mm} \times 470 \mathrm{~mm} \times 90 \mathrm{~mm}$
Weight:	Not above 7 kg

ONE-TRAY PAPER TRAY UNIT

Paper Size:	A5 to A3 51/2" x 81/2" SEF to $11^{\prime \prime} \times 17$ "
Paper Weight:	$60-105 \mathrm{~g} / \mathrm{m}^{2}, 16-28 \mathrm{lb}$.
Tray Capacity:	500 sheets ($\left.80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}.\right) \times 1$ tray
Paper Feed System:	Feed roller and friction pad
Paper Height Detection:	4 steps (100\%, 70\%, 30\%, Near end)
Power Source:	24 Vdc and 5 Vdc (from the copier/printer): 120 Vac: 120 V version, from the copier/printer when the optional tray heater is installed 220 - 240 Vac: 230 V version, from the copier/printer when the optional tray heater is installed
Power Consumption:	Max: 20 W (Copying/printing) 23 W (Optional Tray Heater On) Average: 13 W (Copying/printing) 15 W (Optional Tray Heater On)
Weight:	12 kg (26.4 lb.)
Size (W x D x H):	$550 \mathrm{~mm} \times 520 \mathrm{~mm} \times 134 \mathrm{~mm}$

TWO-TRAY PAPER TRAY UNIT

Paper Size:	A5 to A3 $51 / 2^{\prime \prime} \times 81 / 2 " \text { SEF to } 11 " \times 17 "$
Paper Weight:	$60-105 \mathrm{~g} / \mathrm{m}^{2}, 16-28 \mathrm{lb}$.
Tray Capacity:	500 sheets ($\left.80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}.\right) \times 2$ trays
Paper Feed System:	Feed roller and friction pad
Paper Height Detection:	4 steps (100\%, 70\%, 30\%, Near end)
Power Source:	$24 \mathrm{Vdc}, 5 \mathrm{Vdc}$ (from the copier/printer) 120 Vac: 120 V version, from the copier/printer when the optional tray heater is installed 220 - 240 Vac: 230 V version, from the copier/printer when the optional tray heater is installed
Power Consumption:	Max: 30 W (Copying/printing) 23 W (Optional Tray Heater On) Average: 17 W (Copying/printing) 15 W (Optional Tray Heater On)
Weight:	25 kg (55 lb.$)$
Size ($W \times D \times H$)	$550 \mathrm{~mm} \times 520 \mathrm{~mm} \times 271 \mathrm{~mm}$

One-Bin Tray

Paper Size: Width: $140 \sim 297 \mathrm{~mm}$
Length: $140 \sim 432 \mathrm{~mm}$
Output Standard Position: Center
Paper Weight
$60 \sim 105 \mathrm{~g} / \mathrm{m}^{2}, 16 \sim 28 \mathrm{lbs}$.
Tray Capacity:
Power Source:
Power Consumption:
Weight:
Size (W x D x H) :
100 sheets (A4 LEF $80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}$)
5 VDC, 24 VDC (from the copier)
Max. 20 W
1.55 kg (Base unit: 1.1 kg , Tray: 0.45 kg)
$461 \mathrm{~mm} \times 478 \mathrm{~mm} \times 104 \mathrm{~mm}$
($508 \mathrm{~mm} \times 478 \mathrm{~mm} \times 104 \mathrm{~mm}$ when tray extended)

